• Title/Summary/Keyword: ground rainfall

Search Result 400, Processing Time 0.024 seconds

Evaluation of Ground-Truth Results of Radar Rainfall Depending on Rain-Gauge Data (우량계 강우 자료에 따른 레이더 강우의 지상보정 결과 검토)

  • Kim, Byoung-Soo;Kim, Kyoung-Jun;Yoo, Chul-Sang
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.19-29
    • /
    • 2007
  • This study compares various ground-truth designs of radar rainfall using rain-gauge data sets from Korea Meteorological Administration (KMA), AWS and Ministry of Construction and Transportation (MOCT). These Rain-gauge data sets and the Mt. Gwanak radar rainfall data for the same period were compared, and then the differences between two observed rainfall were evaluated with respect to the amount of bias. Additionally this study investigated possible differences in bias due to different storm characteristics. The application results showed no distinct differences between biases from three rain-gauge data sets, but some differences in their statistical characteristics. In overall, the design bias from MOCT was estimated to be the smallest among the three rain-gauge data sets. Among three storm events considered, the jangma with the highest spatial intermittency showed the smallest bias.

Runoff assessment using radar rainfall and precipitation runoff modeling system model (레이더 강수량과 PRMS 모형을 이용한 유출량 평가)

  • Kim, Tae-Jeong;Kim, Sung-Hoon;Lee, Sung-Ho;Kim, Chang-Sung;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.493-505
    • /
    • 2020
  • The rainfall-runoff model has been generally adopted to obtain a consistent runoff sequence with the use of the long-term ground-gauged based precipitation data. The Thiessen polygon is a commonly applied approach for estimating the mean areal rainfall from the ground-gauged precipitation by assigning weight based on the relative areas delineated by a polygon. However, spatial bias is likely to increase due to a sparse network of the rain gauge. This study aims to generate continuous runoff sequences with the mean areal rainfall obtained from radar rainfall estimates through a PRMS rainfall-runoff model. Here, the systematic error of radar rainfall is corrected by applying the G/R Ratio. The results showed that the estimated runoff using the corrected radar rainfall estimates are largely similar and comparable to that of the Thiessen. More importantly, one can expect that the mean areal rainfall obtained from the radar rainfall estimates are more desirable than that of the ground in terms of representing rainfall patterns in space, which in turn leads to significant improvement in the estimation of runoff.

Satellite-based Rainfall for Water Resources Application

  • Supattra, Visessri;Piyatida, Ruangrassamee;Teerawat, Ramindra
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.188-188
    • /
    • 2017
  • Rainfall is an important input to hydrological models. The accuracy of hydrological studies for water resources and floods management depend primarily on the estimation of rainfall. Thailand is among the countries that have regularly affected by floods. Flood forecasting and warning are necessary to prevent or mitigate loss and damage. Merging near real time satellite-based precipitation estimation with relatively high spatial and temporal resolutions to ground gauged precipitation data could contribute to reducing uncertainty and increasing efficiency for flood forecasting application. This study tested the applicability of satellite-based rainfall for water resources management and flood forecasting. The objectives of the study are to assess uncertainty associated with satellite-based rainfall estimation, to perform bias correction for satellite-based rainfall products, and to evaluate the performance of the bias-corrected rainfall data for the prediction of flood events. This study was conducted using a case study of Thai catchments including the Chao Phraya, northeastern (Chi and Mun catchments), and the eastern catchments for the period of 2006-2015. Data used in the study included daily rainfall from ground gauges, telegauges, and near real time satellite-based rainfall products from TRMM, GSMaP and PERSIANN CCS. Uncertainty in satellite-based precipitation estimation was assessed using a set of indicators describing the capability to detect rainfall event and efficiency to capture rainfall pattern and amount. The results suggested that TRMM, GSMaP and PERSIANN CCS are potentially able to improve flood forecast especially after the process of bias correction. Recommendations for further study include extending the scope of the study from regional to national level, testing the model at finer spatial and temporal resolutions and assessing other bias correction methods.

  • PDF

Variation of Slope Stability under rainfall considering Train Speed (열차의 속도 하중을 고려한 강우시 성토사면의 안정성 변화)

  • 김정기;김현기;박영곤;신민호;김수삼
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.601-607
    • /
    • 2002
  • Infiltration of rainfall causes railway embankment to be unstable and may result in failure. Basic relationship between the stability of railway embankment and rainfall introducing the partial saturation concept of ground are defined to analyze the stability of embankment by rainfall. A pressure plate test is also peformed to obtain soil-water characteristic curve of unsaturated soils. Based on this curve, the variables in the shear strength function and permeability function are also defined. These functions are used fur the numerical model for evaluation of railway embankments under rainfall. As comparing the model and case studies, the variation of shear strength, the degree of saturation and pore-water pressure for railway embankment during rainfall can be predicted and the safety factor of railway embankment can be expressed as the function of rainfall amount namely rainfall index. Therefore, the research on safety factor on railway embankment considering train speed and rainfall infiltration with the variation of rainfall intensity and rainfall duration was carried out in this paper.

  • PDF

Stability Analysis of Slope in Unsaturated Soil Based on the Characteristics of Rainfall (강우특성을 고려한 불포화토 사면의 안정성 해석)

  • Lee, Gwan-Young;Lee, Kang-Il;Kim, Chan-Kee;Chang, Yong-Chai
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.663-668
    • /
    • 2005
  • The present study proposed to examine the appropriateness of the ground water level condition that had a significant effect on the stability of the slopes and, for this purpose, analyzed the rise of ground water level during the rainy season by applying the average daily rainfall of Seoul for the last 30 years. The result showed that the rise of ground water level was 6.0$\sim$41.0% of the slope height, which suggests that the currently applied condition of ground water level is somewhat overestimated. In addition, the result of interpreting the stability of slopes during the rainy season, slopes were unstable in all conditions when the ground water level was at the ground surface and base failure occurred. This suggests the importance of ground water level condition in stability analysis.

  • PDF

Investigation of Pore Water Pressure Variation in Slope during Rainfall from Laboratory Model Tests (실내모형실험을 통한 강우시 사면내 간극수압의 변화 탐구)

  • 김홍택;유한규;강인규;이혁진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.199-206
    • /
    • 2001
  • Landslides generally occur due to influences of the internal and external factors. Internal factors include ground characteristics, terrain and so on. External factors can also be divided into natural factors such as rainfall, ground water, earthquake and so on, and artificial factors resulting from cutting and embankments. Among these factors, rainfall becomes the most important external factors by means of which landslides occur in Korea. To appropriately deal with tile effects of pore water pressures due to rainfall, the method using the pore water pressure ratio(r$\_$u/) is generally applied in slope stability analysis or the design of slope reinforcements. Since tire value of r,, is in general not constant over the whole cross section, in most slope stability analyses the average values are used with little loss in accuracy. However, determination of the average values of r$\_$u/ to applied in the design is difficult problem. Therefore, in this study, tile average values of r$\_$u/ according to the intensity of rainfall and slope inclination is suggested based on results of the small scaled model tests using the artificial rainfall apparatus. It is found from the model tests that the average values of r$\_$u/ is about 0.07∼0.18(in case of the intensity of rainfall is 50mm/hr.), about 0.10∼0.28(in case of the intensity of rainfall is 100mm/hr.), and about 0.10∼0.33(in case of the intensity of rainfall is 150mm/hr.).

  • PDF

A Study on the Design Load of Artificial Soil Ground (인공지반의 설계하중 산정에 관한 연구)

  • Youn, Seong-Cheol;Kim, Tae-Gyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.36-46
    • /
    • 2009
  • The objective of this study is to analyze the effect of artificial soil ground on a structure. When the artificial soil ground is planted, the technical factors to be considered will be the load for buildings and the growth of plants. There are no current studies of the effect of artificial soil ground on a structure and this study will analyze the load effects of artificial soil ground, which mixes both pearlite and natural soil on structures. The load affecting the structures due to artificial soil ground will be maximized when the artificial soil ground becomes saturated, and which would occur when the rainfall intensity exceeds the infiltration capacity of the artificial soil ground. In order to determine whether the artificial soil ground has reached saturation or not, a 10 years frequency and 10 minutes rainfall intensity which is used for in urban drain design, is utilized. The hydraulic conductivity of artificial soil and mixed soil has been changed depending on the proportion of the mix, It has a range of fluctuation in the degree of hardening, in particular, but does not exceed the 10 minutes rainfall intensity over 10 years frequency in the most cases. Therefore, it would be efficient to apply the saturated unit weight of artificial soil ground as the design load of a structure.

Failure Predict of Standard Sand Model Slope using Compact Rainfall Simulation (소형 인공강우 장치에 의한 표준사 모형사면의 붕괴 예측)

  • Moon, Hyo Jong;Kim, Dae Hong;Jeong, Ji Su;Lee, Seung Ho
    • Journal of Korean Society of Disaster and Security
    • /
    • v.8 no.2
    • /
    • pp.21-26
    • /
    • 2015
  • This study analyzes the failure predict of model slope due to changes in ground condition followed by heavy rainfall with a simulated rainfall system. the movement of a slope from the rainfall penetrating the unsaturated soil is investigated with respect to various conditions of pore-water pressure, earth pressure and moisture content, considering rainfall duration and permeability.

A Case Study on Rainfall Observation and Intensity Estimation using W-band FMCW Radar (W밴드 FMCW 레이더를 이용한 강우 관측 및 강우 강도 추정 사례 연구)

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1430-1437
    • /
    • 2019
  • In this paper, we proposed a methodology for estimating rainfall intensity using a W-band FMCW automotive radar signal which is the core technology of autonomous driving car. By comparing and analyzing the results of rainfall and non-rainfall observation, we found that the reflection intensity of the automotive radar is changed with rainfall intensity. We could confirm the possibility of deriving the quantitative precipitation estimation using the methodology derived from this result. In addition it can be possible to develop a new paradigm of precipitation observation technique by observing various events together with the weather radar and the ground rainfall observation equipment.

A Study on Characteristics of Rainfall Triggering Landslides and Geometry of Slopes in Chuncheon during 2006 (2006년 춘천지역 산사태 유발 강우와 사면의 기하 특성에 관한 연구)

  • Yoo, Nam-Jae;Lee, Yong-Won;Kim, Ho-Jin
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.33-40
    • /
    • 2010
  • This paper is results of analyzing the characteristics of rainfall triggering landslides and geometry of slopes, caused by the heavy rainfall and antecedent precipitation by Typhoons Ewiniar and Bilis at Chuncheon area in Gangwondo around July in 2006. As results of analyzing the characteristics of rainfall, landslides in 131 sites were found to happen due to the heavy rainfall having the maximum intensity of rainfall in an hour during July 15 and antecedent precipitation during July 12 to 14 causing the ground to be weak by increasing the degree of saturation previously. From results of analyzing the geometrical characteristics of 131 slopes where landslides occurred, the slope width were in the range of 6~10m. The average slope length and angle were 46m and $51.8^{\circ}$, which was relatively steep slope, respectively. Landlises occurred in the elevation of 400 - 500 m with the most probable frequency.

  • PDF