• Title/Summary/Keyword: ground plane size

Search Result 158, Processing Time 0.026 seconds

A Study on the Antenna Characteristic Variation according to Ground Plane Size of Print Type Antenna (프린트형 안테나의 접지면 크기에 따른 안테나 특성 변화에 관한 연구)

  • 송면규;양규식
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.365-370
    • /
    • 2000
  • In this dissertation, in order to analyze the ground plane size which will affect the antenna characteristic, the appropriate antenna was designed and produced in compliance with the needs that the existing antenna should be improved, and then the optimum ground plane size was calculated. It was proved it affected the radiation characteristic greatly but didn't affect the impedance characteristic nearly when ground plane size of the existing folded slot antenna was enlarged with using the copper e cut in some size. Though it require the complicate procedure by the strict design in order to calculate exactly, if it is made of the antenna of the appropriate size that the effect of ground plane can be taken no account, it can be made easily.

  • PDF

Design of Size-reduced Ring Hybrid Couplers Using a Common Defected Ground Structure (공통 결함접지구조를 이용한 링 하이브리드 커플러의 소형화 설계)

  • Lim, Jong-Sik;Lee, Jun;Kwon, Kyung-Hoon;Jeong, Yong-Chae;Han, Sang-Min;Ahn, Dal
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1662-1667
    • /
    • 2012
  • This paper describes the design of size-reduced ring hybrid couplers (RHC) using a common defected ground structure (CDGS). The proposed RHC consists of double-sided microstrip line and the CDGS patterns which are placed in the common ground plane of the double-sided microstrip line. The effects of DGS as a periodic structure are imposed on both microstrip lines, so the advantages of the existing DGS are doubled. The normal RHC is designed first and folded by the half reference plane with the CDGS realized on the common ground plane. So another trial for size-reduction is performed by folding the RHC and inserting CDGS besides to the conventional DGS. In order to show a design example, a 2GHz RHC is designed and miniaturized using CDGS. The size of the miniaturized RHS is around 50% of the normal one, while the performances are well preserved even after the size-reduction.

A study on the Ground Effect in a Ultra-Wideband Planar Monopole antenna (평면형 초광대역 모노폴 안테나의 접지 영향 연구)

  • Lim, Gye-jae
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.3
    • /
    • pp.162-167
    • /
    • 2013
  • The variation of S11 depending on the ground sizes of circular planar monopole UWB antenna was studied. And optimal ground structure and size in UWB application devices are proposed. Radius R of circular monopole UWB antenna as a reference antenna was designed for UWB frequency band, and the measured results of this antenna on the horizontal ground plane was good agreed with the simulated results. When radius R is small, optimal size of ground plane is proposed, and when radius R is more large, minimum size of ground plane is proposed.

Effects of ground size on characteristics of ENG ZOR antennas (접지면 크기가 ENG ZOR 안테나 특성에 미치는 영향)

  • Lee, Seung-Wook;Park, Jae-Hyun;Lee, Jeong-Hae
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.8
    • /
    • pp.8-14
    • /
    • 2008
  • In this paper, the effects of ground size on the characteristics such as input resistance, fractional bandwidth, and radiation efficiency of epsilon negative (ENG) zeroth order resonance (ZOR) antennas were investigated theoratically. Two types of ENG ZOR antennas were studied: mushroom ENG ZOR antenna with via and via-free defected ground structure (DGS) ENG ZOR antenna. It was confirmed that the ground size had more effects on the characteristics of a Via-free ZOR antenna than those of mushroom ZOR antenna with via. The via-free antenna could radiate properly with the required size of ground plane since the size of ground plane should exceed some critical value for DGS to suitably operate. As a height of substrate of mushroom ZOR antenna with via increased, the fractional bandwidth and radiation efficiency were improved. On the other hand, as a height of via-free ZOR antenna increased, the fractional bandwidth and radiation efficiency were degraded. Finally, a via-free ZOR antenna had an advantage of compactness even though its fractional bandwidth is narrow and its radiation efficiency is poor, compared with thoses of mushroom ZOR antenna with via.

Front-to-Back Ratio Improvement of a Microstrip Patch Antenna Loaded with Soft Surface Structure in a Partially Removed Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.4
    • /
    • pp.247-253
    • /
    • 2012
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna. The back radiation of the microstrip patch antenna is reduced by removing some metallic parts around the ground plane and placing a new soft-surface configuration, consisting of an array of stand-up split-ring resonators on a bare dielectric substrate near the two ground plane edges. Compared to the F/B ratio of a conventional microstrip patch antenna with a full ground plane of the same size, our proposed microstrip patch antenna experimentally achieves an improved F/B ratio of 9.6 dB.

Effect of Loading Split-Ring Resonators in a Microstrip Antenna Ground Plane

  • Lee, Hong-Min
    • Journal of electromagnetic engineering and science
    • /
    • v.15 no.2
    • /
    • pp.120-122
    • /
    • 2015
  • This study presents a new, simple method for improving the front-to-back (F/B) ratio of a microstrip patch antenna (MSA) based on surface wave suppression. The back radiation of the MSA is significantly reduced by using the meandered ground plane edges and placing split-ring resonators (SRRs) in the middle of the meandered slots. By loading SRRs near the center of the meandered ground plane edges, some parts of the diffracted back-lobe power density can be reduced further. Compared to the F/B ratio of a conventional MSA with a full ground plane of the same size, an improved F/B ratio of 18 dB has been achieved experimentally for our proposed MSA.

Design of Broadband Compact Microstrip Antenna with U slotted Ground Plane Using Genetic Algorithm (유전자 알고리즘을 이용한 접지면 U 슬롯 구조의 광대역 소형 마이크로스트립 안테나 설계)

  • Lim, Hyun-Jun;Yoon, Hyun-Boo
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2003.11a
    • /
    • pp.432-436
    • /
    • 2003
  • This paper presents a broadband microstrip antenna design with four U slots on the ground plane by using of genetic algorithm. FDTD method is used as fitness function for antenna analysis, and length of rectangular patch, length of ground plane slot, distance from center point to feed point is used as optimization parameter for maximum bandwidth and minimum size. The measurement result of implemented antenna present bandwidth of 15.63 % and peak gain of 3.61 dBi in the 2.445 GHz, and antenna has a reduced patch size of 54.8 % compare with normal microstrip antenna.

  • PDF

Hybrid Planar Inverted-F Antenna with a T-Shaped Slot on the Ground Plane

  • Jeon, Sin-Hyung;Choi, Hyeng-Cheul;Kim, Hyeong-Dong
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.616-618
    • /
    • 2009
  • In this letter, a novel hybrid planar inverted-F antenna (PIFA) with a T-shaped slot on the ground plane is proposed. The loop structure formed by the feed line and shorting pin can be operated as a series and shunt inductance for the PIFA and the T-shaped slot antenna, respectively. The PIFA operates at a frequency of 1.75 GHz, while the T-shaped slot on the ground plane operates at 2.4 GHz by the same voltage feeding source. The height of the PIFA is 6.5 mm, and the size of an upper patch is designed to be 30 mm${\times}$16 mm. The measured relative impedance bandwidth of the PIFA and the T-shaped slot are about 12% and 21%, respectively. In addition, good antenna performance was achieved.

Ground Plane Detection Method using monocular color camera

  • Paik, Il-Hyun;Oh, Jae-Hong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.588-591
    • /
    • 2004
  • In this paper, we propose a ground plane detection algorithm, using a new image processing method (IPD). To extract the ground plane from the color image acquired by monocular camera, we use a new identical pixel detection method (IPD) and an edge detection method. This IPD method decides whether the pixel is identical with the ground plane pixel or not. The IPD method needs the reference area and its performance depends on the reference area size. So we propose the reference area auto-expanding algorithm in accordance with situation. And we evaluated the proposed algorithm by the experiments in the various environments. From the experiments results, we know that the proposed algorithm is efficient in the real indoor environment.

  • PDF

Fast computation method for the voltage-current analysis on the rectangular power-ground plane (직사각형의 전력-접지층에 대한 전압전류 특성해석을 위한 빠른 계산방법)

  • Suh, Young-Suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.1
    • /
    • pp.140-145
    • /
    • 2005
  • The existing analytical expression for the voltage between the power and ground plane consist of metal-dielectric-metal board is expressed in the two dimensional infinite series. To reduce the computation time, the two dimensional infinite series is converted to the one dimensional infinite series using the summation formula of Fourier series. We applied these equations to the analysis of voltage between the $9‘{\times}4'$ size power-ground plane. The derived one dimensional infinite series shows the more rapid convergency and the more accurate result than the two dimensional infinite series. This equation can be applied to the power-ground plane analysis which needs a lot of the repeating computation.