• 제목/요약/키워드: ground motions

검색결과 900건 처리시간 0.019초

영월 및 경주지진 파형의 주파수 분석 (Characteristics of Spectrum using Observed Ground Motions from the Yongwol and the KyoungJu Earthquakes)

  • 김준경
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1998년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Spring 1998
    • /
    • pp.407-412
    • /
    • 1998
  • Amplification factor spectrum, using the observed strong ground motions database, has been obtained and compared with Standard Response Spectrum, which were suggested by US NRC. The observed ground motions from the Yongwol and the Kyoungju Earthquake, respectively, which are suppose to represent domestic seismotectonic characteristics such as seismic source, attenuation, and site effect, are used for the analysis of amplification factor spectrum. Amplification factors have been calculated by comparing the observed peak ground motions with results from responses to the observed horizontal and vertical ground motions. The comparison shows that the amplification factors resultant from this study exceeds those of Standard Response Spectum at relatively higher frequencies. The results suggest that the characteristics of the seismic strong ground motion, which are supposed to represent the domestic seismotectonic characteristics, differs from those of Standard Response Spectrum, especially at hither frequencies

  • PDF

2017년 포항지진으로 인하여 발생된 최대지반가속도 (PGA)예측 (Prediction of Peak Ground Acceleration Generated from the 2017 Pohang Earthquake)

  • 지현우;한상환
    • 한국지진공학회논문집
    • /
    • 제22권3호
    • /
    • pp.211-217
    • /
    • 2018
  • The Pohang earthquake with a magnitude of 5.4 occurred on November 15, 2018. The epicenter of this earthquake located in south-east region of the Korean peninsula. Since instrumental recording for earthquake ground motions started in Korea, this earthquake caused the largest economic and life losses among past earthquakes. Korea is located in low-to moderate seismic region, so that strong motion records are very limited. Therefore, ground motions recorded during the Pohang earthquake could have valuable geological and seismological information, which are important inputs for seismic design. In this study, ground motions associated by the 2018 Pohang earthquake are generated using the point source model considering domestic geological parameters (magnitude, hypocentral distance, distance-frequency dependent decay parameter, stress drop) and site amplification calculated from ground motion data at each stations. A contour map for peak ground acceleration is constructed for ground motions generated by the Pohang earthquake using the proposed model.

공간적 변이성을 고려한 지진파 생성 (Spatially variable ground motion simulation)

  • 박두희;유세프 하샤시;이승찬;이현우;천병식
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.625-633
    • /
    • 2006
  • Spatial variability of ground motions has significant influence on dynamic response of longitudinal structures such as bridges and tunnels. The coherency function, which quantifies the degree of positive or negative correlation between two ground motions, is often used to describe the spatially variable ground motions. This paper compares two available procedures for developing spatially variable ground time histories from a given coherency function. Hao's method shows serious limitation, resulting in unrealistic decrease in coherency with increase in distance Abrahamason's method, on the other hand, preserves important characteristics of the reference ground motion. Therefore, the Abrahamason's method is recommended to be used in developing spatially varying ground motions.

  • PDF

시간영역 인공지진파 생성 (Generation of Synthetic Ground Motion in Time Domain)

  • 김현관;박두희;정창균
    • 토지주택연구
    • /
    • 제1권1호
    • /
    • pp.51-57
    • /
    • 2010
  • 국내에서 내진설계의 중요성이 점차적으로 부각되고 있으며 이에 따라 설계 시 동적 지진해석의 수행빈도가 높아지고 있다. 동적 지진해석을 수행하기 위한 가장 중요한 입력변수 중 한가지는 입력지진파이다. 그러나 현재 국내에서는 지진학적 검토 없이 미국, 일본 등에서 계측된 강진 기록을 입력지진파로 사용하거나 주파수영역에서 생성된 인공지진파를 사용하고 있다. 국외 계측 지진기록은 지진 규모에 따라 변화하는 지속시간과 에너지를 고려할 수 없어서 국내 지진환경에는 적합하지 않으며, 주파수 영역에서 생성되는 설계응답스펙트럼에 맞춤형 인공지진파는 실제 지진기록과 주파수 특성이 상이한 문제가 있다. 본 연구에서는 이와 같은 입력지진파의 문제점을 극복하기 위하여 시간영역에서 수행되는 응답스펙트럼 맞춤형 인공지진파 알고리즘을 적용하여 입력 지진파를 생성하였다. 생성된 지진파는 계측 지진기록의 고유한 성질인 Non-stationary 특성을 보존하며 동시에 설계 응답스펙트럼과 거의 완벽한 일치성을 보이는 것으로 나타났다.

Influence of multi-component ground motions on seismic responses of long-span transmission tower-line system: An experimental study

  • Tian, Li;Ma, Ruisheng;Qiu, Canxing;Xin, Aiqiang;Pan, Haiyang;Guo, Wei
    • Earthquakes and Structures
    • /
    • 제15권6호
    • /
    • pp.583-593
    • /
    • 2018
  • Seismic performance is particularly important for life-line structures, especially for long-span transmission tower line system subjected to multi-component ground motions. However, the influence of multi-component seismic loads and the coupling effect between supporting towers and transmission lines are not taken into consideration in the current seismic design specifications. In this research, shake table tests are conducted to investigate the performance of long-span transmission tower-line system under multi-component seismic excitations. For reproducing the genuine structural responses, the reduced-scale experimental model of the prototype is designed and constructed based on the Buckingham's theorem. And three commonly used seismic records are selected as the input ground motions according to the site soil condition of supporting towers. In order to compare the experimental results, the dynamic responses of transmission tower-line system subjected to single-component and two-component ground motions are also studied using shake table tests. Furthermore, an empirical model is proposed to evaluate the acceleration and member stress responses of transmission tower-line system subjected to multi-component ground motions. The results demonstrate that the ground motions with multi-components can amplify the dynamic response of transmission tower-line system, and transmission lines have a significant influence on the structural response and should not be neglected in seismic analysis. The experimental results can provide a reference for the seismic design and analysis of long-span transmission tower-line system subjected to multi-component ground motions.

2016년 경주지진 원인단층의 시나리오 지진에 의한 국내 광역도시 지진관측소에서의 추계학적 강진동 모사 (Stochastic Strong Ground Motion Simulation at South Korean Metropolises' Seismic Stations Based on the 2016 Gyeongju Earthquake Causative Fault)

  • 최호선
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.233-240
    • /
    • 2021
  • The stochastic method is applied to simulate strong ground motions at seismic stations of seven metropolises in South Korea, creating an earthquake scenario based on the causative fault of the 2016 Gyeongju earthquake. Input parameters are established according to what has been revealed so far for the causative fault of the Gyeongju earthquake, while the ratio of differences in response spectra between observed and simulated strong ground motions is assumed to be an adjustment factor. The calculations confirm the applicability and reproducibility of strong ground motion simulations based on the relatively small bias in response spectra between observed and simulated strong ground motions. Based on this result, strong ground motions by a scenario earthquake on the causative fault of the Gyeongju earthquake with moment magnitude 6.5 are simulated, assuming that the ratios of its fault length to width are 2:1, 3:1, and 4:1. The results are similar to those of the empirical Green's function method. Although actual site response factors of seismic stations should be supplemented later, the simulated strong ground motions can be used as input data for developing ground motion prediction equations and input data for calculating the design response spectra of major facilities in South Korea.

수평 및 수직 지반운동을 받는 직사각형 유체 저장 구조물의 동적 해석 (Dynamic Analysis of Rectangular Liquid Storage Structures Excited by Horizontal and Vertical Ground Motions)

  • 박장호
    • 한국안전학회지
    • /
    • 제19권3호
    • /
    • pp.108-117
    • /
    • 2004
  • Dynamic analysis method is Presented for analyzing rectangular liquid storage structures excited by horizontal and vertical ground motions. The irrotational motion of invicid and incompressible ideal fluid in rigid rectangular liquid storage structures subjected to horizontal and vertical ground motions and the motion of fluid induced by structural deformation are expressed by analytic solutions. Analysis methods are obtained by applying analytic solutions of the fluid motion to finite element equation of the structural motion. The fluid-structure interaction effect is reflected into the coupled equation as added fluid mass matrix. The free surface sloshing motion, hydrodynamic pressure acting on the wall and structural behavior due to horizontal and vertical ground motions are obtained by the presented method.

Modification of ground motions using wavelet transform and VPS algorithm

  • Kaveh, A.;Mahdavi, V.R.
    • Earthquakes and Structures
    • /
    • 제12권4호
    • /
    • pp.389-395
    • /
    • 2017
  • In this paper a simple approach is presented for spectral matching of ground motions utilizing the wavelet transform and a recently developed metaheuristic optimization technique. For this purpose, wavelet transform is used to decompose the original ground motions to several levels, where each level covers a special range of frequency, and then each level is multiplied by a variable. Subsequently, the vibrating particles system (VPS) algorithm is employed to calculate the variables such that the error between the response and target spectra is minimized. The application of the proposed method is illustrated through modifying 12 sets of ground motions. The results achieved by this method demonstrate its capability in solving the problem. The outcomes of the VPS algorithm are compared to those of the standard colliding bodies optimization (CBO) to illustrate the importance of the enhancement of the algorithm.

An empirical bracketed duration relation for stable continental regions of North America

  • Lee, Jongwon;Green, Russell A.
    • Earthquakes and Structures
    • /
    • 제3권1호
    • /
    • pp.1-15
    • /
    • 2012
  • An empirical predictive relationship correlating bracketed duration to earthquake magnitude, site-to-source distance, and local site conditions (i.e. rock vs. stiff soil) for stable continental regions of North America is presented herein. The correlation was developed from data from 620 horizontal motions for central and eastern North America (CENA), consisting of 28 recorded motions and 592 scaled motions. The bracketed duration data was comprised of nonzero and zero durations. The non-linear mixed-effects regression technique was used to fit a predictive model to the nonzero duration data. To account for the zero duration data, logistic regression was conducted to model the probability of zero duration occurrences. Then, the probability models were applied as weighting functions to the NLME regression results. Comparing the bracketed durations for CENA motions with those from active shallow crustal regions (e.g. western North America: WNA), the motions in CENA have longer bracketed durations than those in the WNA. Especially for larger magnitudes at far distances, the bracketed durations in CENA tend to be significantly longer than those in WNA.

원본 지반운동 시간이력에 따른 스펙트럼 부합 시간이력의 특성 (Characteristics of Spectral Matched Ground Motions Time Histories According to Seed Ground Motion Selection)

  • 최다슬;지혜연;김정한
    • 한국지진공학회논문집
    • /
    • 제25권1호
    • /
    • pp.43-52
    • /
    • 2021
  • According to several seismic design standards, a ground motion time history should be selected similar to the design response spectrum, or a ground motion time history should be modified by matching procedure to the design response spectrum through the time-domain method. For the response spectrum matching procedure, appropriate seed ground motions need to be selected to maintain recorded earthquake accelerogram characteristics. However, there are no specific criteria for selecting the seed ground motions for applying this methodology. In this study, the characteristics of ground motion time histories between seed motions and spectral matched motions were compared. Intensity measures used in the design were compared, and their change by spectral matching procedure was quantified. In addition, the seed ground motion sets were determined according to the response spectrum shape, and these sets analyzed the response of nonlinear and equivalent linear single degrees of freedom systems to present the seed motion selection conditions for spectral matching. As a result, several considerations for applying the time domain spectral matching method were presented.