• Title/Summary/Keyword: ground motion spatial variation

Search Result 22, Processing Time 0.016 seconds

Spatially variable effects on seismic response of the cable-stayed bridges considering local soil site conditions

  • Tonyali, Zeliha;Ates, Sevket;Adanur, Suleyman
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.143-152
    • /
    • 2019
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated for variable local soil cases and wave velocities. Quincy Bay-view cable-stayed bridge built on the Mississippi River in Illinois, USA selected as a numerical example. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. The spatial variability of the ground motion is considered with the coherency function, which is represented by the components of incoherence, wave-passage and site-response effects. The incoherence effect is investigated by considering Harichandran and Vanmarcke model, the site-response effect is outlined by using hard, medium and soft soil types, and the wave-passage effect is taken into account by using 1000, 600 and 200 m/s wave velocities for the hard, medium and soft soils, respectively. Mean of maximum response values obtained from the analyses are compared with those of the specific cases of the ground motion model. It is concluded that the obtained results from the bridge model increase as the differences between local soil conditions cases of the bridge supports change from firm to soft. Moreover, the variation of the wave velocity has important effects on the responses of the deck and towers as compared with those of the travelling constant wave velocity case. In addition, the variability of the ground motions should be considered in the analysis of long span cable-stayed bridges to obtain more accurate results in calculating the bridge responses.

Seismic Analysis of Tunnel in Transverse Direction Part II: Evaluation of Seismic Tunnel Response via Dynamic Analysis (터널 횡방향 지진해석 Part II: 동적해석을 통한 터널의 지진응답 예측)

  • Park, Du-Hee;Shin, Jong-Ho;Yun, Se-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.6
    • /
    • pp.71-85
    • /
    • 2010
  • Dynamic analyses of tunnels are widely performed in practice in Korea. Accurate performance of a dynamic analysis is very difficult, requiring appropriate application of lower and lateral boundary conditions, deconvolution, constitutive model, and selection of dynamic soil properties etc. Lack of a systematic guideline on how to perform the dynamic analysis makes it even more difficult to perform an analysis. In addition, dynamic analyses are not needed in most cases and pseudo-static analyses are more than adequate. However, they are performed without a clear understanding on the need for the dynamic analysis and differences between the two methods. In this study, firstly, a guideline for correctly performing a 2D dynamic analysis is developed. Secondly, the differences in the tunnel responses using dynamic and pseudo-static analyses are discussed and compared. The results show that the discrepancies between the dynamic and static analyses are not significant for most cases. It is therefore recommended that the dynamic analyses be performed at tunnel portal, very soft ground, or in cases where spatial variation of the ground motion needs to be considered in the seismic analysis of tunnels in transverse direction.