• Title/Summary/Keyword: ground model test

Search Result 1,134, Processing Time 0.028 seconds

The Operational Comparison of SPOT GCP Acquisition and Accuracy Evaluation

  • Kim, Kam-Lae;Kim, Uk-Nam;Chun, Ho-Woun;Lee, Ho-Nam
    • Korean Journal of Geomatics
    • /
    • v.1 no.1
    • /
    • pp.1-5
    • /
    • 2001
  • This paper presents an investigation into the operational comparison of SPOT triangulation to build GCP library by analytical plotter and DPW (digital photogrammetric workstation). GCP database derived from current SPOT images can be used to other image sensors of satellite, if any reasons, such as lack of topographic maps or GCPs. But, general formulation of a photogrammetric process for GCP measurement has to take care of the scene interpretation problem. There are two classical methods depending on whether an analytical plotter or DPW is being used. Regardless of the method used, the measurement of GCPs is the weakest point in the automation of photogrammetric orientation procedures. To make an operational comparison, five models of SPOT panchromatic images (level 1A) and negative films (level 1AP) were used. Ten images and film products were used for the five GRS areas. Photogrammetric measurements were carried out in a manual mode on P2 analytical plotter and LH Systems DPW770. We presented an approach for exterior orientation of SPOT images, which was based on the use of approximately eighty national geodetic control points as GCPs which located on the summit of the mountain. Using sixteen well-spaced geodetic control points per model, all segments consistently showed RMS error just below the pixel at the check points in analytical instrument. In the case of DPW, half of the ground controls could not found or distinguished exactly when we displayed the image on the computer monitor. Experiment results showed that the RMS errors with DPW test was fluctuated case by case. And the magnitudes of the errors were reached more than three pixels due to the lack of image interpretation capability. It showed that the geodetic control points is not suitable as the ground control points in DPW for modeling the SPOT image.

  • PDF

Target-free vision-based approach for vibration measurement and damage identification of truss bridges

  • Dong Tan;Zhenghao Ding;Jun Li;Hong Hao
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.421-436
    • /
    • 2023
  • This paper presents a vibration displacement measurement and damage identification method for a space truss structure from its vibration videos. Features from Accelerated Segment Test (FAST) algorithm is combined with adaptive threshold strategy to detect the feature points of high quality within the Region of Interest (ROI), around each node of the truss structure. Then these points are tracked by Kanade-Lucas-Tomasi (KLT) algorithm along the video frame sequences to obtain the vibration displacement time histories. For some cases with the image plane not parallel to the truss structural plane, the scale factors cannot be applied directly. Therefore, these videos are processed with homography transformation. After scale factor adaptation, tracking results are expressed in physical units and compared with ground truth data. The main operational frequencies and the corresponding mode shapes are identified by using Subspace Stochastic Identification (SSI) from the obtained vibration displacement responses and compared with ground truth data. Structural damages are quantified by elemental stiffness reductions. A Bayesian inference-based objective function is constructed based on natural frequencies to identify the damage by model updating. The Success-History based Adaptive Differential Evolution with Linear Population Size Reduction (L-SHADE) is applied to minimise the objective function by tuning the damage parameter of each element. The locations and severities of damage in each case are then identified. The accuracy and effectiveness are verified by comparison of the identified results with the ground truth data.

Evaluation of the Sequential Behavior of Tieback Wall in Sand by Small Scale Model Tests

  • Seo, Dong-Hee;Chang, Buhm-Soo;Jeong, Sang-Seom;Kim, Soo-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.113-129
    • /
    • 1999
  • In this study, a total of 12 types of sequential model tests were conducted at the laboratory for small scale anchored walls. The sequential behavior for flexible wall embedded in sand was investigated by varying degrees of relative density of Joomoonjin sand and flexibility number of model wall. The model tests were carried out in a 1000mm width, 1500mm length, and 1000mm high steel box. Load cells, pressure cells, displacement transducer and dial gauges were used to measure the anchor forces, lateral wall deflections, lateral earth pressures and vertical displacements of ground surface, respectively. Limited model tests were performed to examine the parameters for soil-wall interaction model and the formulation of analytical method was revised in order to predict the behavior of anchored wall in sand. Based on the model tests and proposed analytical method, model simulations were performed and the predictions by the present approach were compared with measurements by the model tests and predictions by other commercial programs. It is shown that the prediction by the present approach simulates qualitatively well the general trend observed for model test.

  • PDF

Wind Tunnel Test on the Aerodynamic Characteristics of a PARWIG Craft (PARWIG선의 공력특성에 관한 풍동실험)

  • H.H. Chun;J.H. Chang;K.J. Paik;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.57-68
    • /
    • 2000
  • The Power Augmented Ram(PAR) effect, which blows the down stream of the propellers into the underside of the wings and hence increases the pressure between the lower surface of the wings and the sea surface, is known significantly to enhance the performance of the WIG concept by reducing the take-off and landing speeds. The aerodynamic characteristics of a 20 passenger PARWIG are investigated by wind tunnel tests with the 1/20 scale model. The efflux of the forward mounted propellers are simulated by jet flows with a blower and duct system. The lift, drag, and pitch moment of the model with various ground clearances, angles of attack and flap angles are measured for the various jet velocities, jet nozzle angles, horizontal and vertical positions of the nozzle, and the nozzle diameters. The aerodynamic characteristics of the PARWIG due to these parametric changes are compared and pertinent discussions are included. It is shown that the proper use of the PAR can increase the lift coefficient of as much as up to 4.

  • PDF

Influence of Facing Stiffness on Global Stability of Soil Nailing Systems (전면벽체의 강성이 Soil Nailing 시스템의 전체안정성에 미치는 영향)

  • Kim, Hong-Taek;Kang, In-Kyu;Kwon, Young-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.5 no.3
    • /
    • pp.51-60
    • /
    • 2004
  • In Korea there are recently many attempts to expand a temporary soil nailing system into a permanent soil nailing system since the first construction in 1993. In the soil nailing system, the rigid facing walls act on restraining the deformation of the ground. These are purposed to minimize the damage of adjacent buildings or underground structures. In Korea, to minimize the relaxation of the ground, the soil nailing system in the downtown area is often used experientially together with braced cuts, sheet pile walls, soil cement walls (SCW), or jet grouting walls. However, for the conservative design, the confining effects by the stiff facing have been ignored because the proper design approach of considering the facing stiffness has not been proposed. In this study, various laboratory model tests are carried out to examining the influence the rigidity of facings on the global safety of soil nailing system. Also, the parametric studies using the numerical technique as shear-strength reduction technique are carried out. In the parametric study, the thickness of concrete facing walls is changed to identify the effects of the facing wall stiffness.

  • PDF

Numerical Analysis on the Behavior of a Slope with Upward Drainable Soil Nails during Rainfall (수치해석을 통한 상향식 배수겸용 쏘일네일링에 대한 강우모형사면 거동 연구)

  • Kim, Young-Nam;Lee, Choul-Kyu;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.11-22
    • /
    • 2014
  • In this study, numerical analyses and model tests were conducted to figure out the behavior of a slope reinforced by upward drainable soil nails during rainfall. The model tests were carried out on both reinforced and unreinforced slopes. To verify the results of the tests, seepage analyses were performed and compared with the test results using a commercial program, SEEP/W. The results showed that the numerical analyses have in overall a good agreement with the experiments in the variations of ground water level and pore water pressure even though there is some time delay for the experiment before the changes in the ground water level and pore water pressure after rainfall are observed, while the numerical analyses not.

Lateral Behavior of Sin811e and Group Piles in Sand (사질토 지반에서 말뚝의 수평거동)

  • 김영수;김병탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.3-44
    • /
    • 1999
  • This paper discusses the lateral behavior of single and group piles in homogeneous and non-homogeneous(two layered) soil. In the single pile, the model tests were conducted to investigate the effects on ratio of lower layer height to embedded pile length, ratio of soil modules of upper layer to lower layer, boundary rendition of pile head and tip, embedded pile length, pile construction condition, ground condition with saturate and moisture state in Nak-Dong river sand. Also, in the group pile, the model tests were to investigate the effects on spacing-to-diameter ratio of pile, pile array, ratio of pile spacing, boundary condition of pile head and tip, eccentric load and ground condition. The maximum bending moment and deflection induced in active piles were found to be highly dependent on the relative density, pile construction condition, boundary condition of pile head and tip. Based on the results obtained, it was found that the decrease of lateral bearing capacity in saturated sand was in the range of 31% - 53% as compared with the case of dry sand. Also, in the group pile, a spacing-to-diameter of 6.0 seems to be large enough to eliminate the group effect for the case of relative density of 61.8%, and 32.8%, and then each pile in such a case behaves essentially the same as a single pile. In this study, the program is developed by using the modified Chang method which used p - y method and the exact solution of governing equation of pile and it can be used to calculate the deflection, bending moment and soil reaction with FDM in non-homogeneous soil. In comparing the modified Chang method with field test results, the predict results shows better agreement with measured results in field tests.

  • PDF

A Study on the Effect of Carrying Vertical Loads Over Embankment Piles (성토지지말뚝의 연직하중 분담효과에 관한 연구)

  • 홍원표;이광우
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.285-294
    • /
    • 2002
  • Embankment Piles, which is subjected to damage due to lateral movement of soft ground, can be classified into pile slab, cap beam pile, and isolated cap pile according to the installation pattern of pile cap. In the cap beam pile and the isolated cap pile method, the soil arch is developed by the different stiffness between pile and soil, and most embankment loads are transferred into embankment piles through soil arch. In these two methods, the difference of soil arch is that the soil arch of the cap beam pile method develops like the arch from of tunnel between cap beams and the soil arch of the isolated cap pile method develops like dome between isolated caps. Therefore, theoretical analysis methods on soil arching effect of the cap beam pile and the isolated cap pile method were respectively proposed according to their own arch form considering the limiting equilibrium of stresses in a crown of soil arch. And a series of model tests were performed both to investigate the load transfer by soil arching in fills above embankment piles and to verify the reliability of the theoretical analysis.

An Experimental Study on the Two Dimensional Behaviors due to Excavation of Crossed Tunnel below existing tunnel (기존터널 하부에 교차하여 굴착되는 터널의 2차원 거동 특성에 대한 실험적 연구)

  • Hong, Suk-Bong;Kim, Dong-Gab;Lee, Sang-Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.119-131
    • /
    • 2005
  • The two dimensional behaviors of the existing upper tunnel and the ground at crossed area due to the excavation of a lower tunnel were studied experimentally, The model tests were conducted by changing the relative location of the existing upper tunnel and the lower tunnel. The results of the study show that a vertical earth pressure outside the loosened area was increased due to longitudinal arching effect same as a single tunnel. In case vertical distance between the upper and lower tunnel is 0.7 H and 1.0 H respectively (H is a height of the lower tunnel), vertical earth pressure increased in the loosened area behind the tunnel face. But when a vertical distance is 1, 3 H, ground behaviors appeared similarly to a single tunnel.

  • PDF

Critical seismic incidence angle of transmission tower based on shaking table tests

  • Tian, Li;Dong, Xu;Pan, Haiyang;Gao, Guodong;Xin, Aiqiang
    • Structural Engineering and Mechanics
    • /
    • v.76 no.2
    • /
    • pp.251-267
    • /
    • 2020
  • Transmission tower-line systems have come to represent one of the most important infrastructures in today's society. Recent strong earthquakes revealed that transmission tower-line systems are vulnerable to earthquake excitations, and that ground motions may arrive at such structures from any direction during an earthquake event. Considering these premises, this paper presents experimental and numerical studies on the dynamic responses of a 1000 kV ultrahigh-voltage (UHV) transmission tower-line system under different seismic incidence angles. Specifically, a 1:25 reduced-scale experimental prototype model is designed and manufactured, and a series of shaking table tests are carried out. The influence of the seismic incidence angle on the dynamic structural response is discussed based on the experimental data. Additionally, the incidence angles corresponding to the maximum peak displacement of the top of the tower relative to the ground (referred to herein as the critical seismic incidence angles) are summarized. The experimental results demonstrate that seismic incidence angle has a significant influence on the dynamic responses of transmission tower-line systems. Subsequently, an approximation method is employed to orient the critical seismic incidence angle, and a corresponding finite element (FE) analysis is carried out. The angles obtained from the approximation method are compared with those acquired from the numerical simulation and shaking table tests, and good agreement is observed. The results demonstrate that the approximation method can properly predict the critical seismic incidence angles of transmission tower-line systems. This research enriches the available experimental data and provides a simple and convenient method to assess the seismic performance of UHV transmission systems.