• Title/Summary/Keyword: ground model test

Search Result 1,135, Processing Time 0.024 seconds

Study on the discharge of soil particles and ground collapse through cracks in underground structures (지중구조물 균열을 통한 토립자 유출 및 지반함몰 특성 연구)

  • Kim, Ho-Jong;Kim, Kang-Hyun;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.699-715
    • /
    • 2019
  • Recently, in urban areas, cavities and ground collapse adjacent to underground structures are frequently reported. Several studies on the cavity generation by structure cracks have been made, however they are focused on the cause of cracks and settlement of the ground. In this paper, soil particle and groundwater discharge through pipe cracks and cavity generation mechanism are investigated. The theoretical analysis of the groundwater, which is the main factor of the drainage of the soil particles, and the particle transport mechanism and flow characteristics were investigated. An experimental model test was carried out to identify the mechanism of cavity generation by underground buried pipe cracks. The soil particle weight of discharge through the cracks, and the movement characteristics of the particles were analyzed using PIV. In this study, it is clearly identified that soil particle movements, cavity generation and ground collapse that occur in the ground are basically caused by the movement of groundwater.

Improving the Accuracy of 3D Object-space Data Extracted from IKONOS Satellite Images - By Improving the Accuracy of the RPC Model (IKONOS 영상으로부터 추출되는 3차원 지형자료의 정확도 향상에 관한 연구 - RPC 모델의 위치정확도 보정을 통하여)

  • 이재빈;곽태석;김용일
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.4
    • /
    • pp.301-308
    • /
    • 2003
  • This study describes the methodology that improves the accuracy of the 3D object-space data extracted from IKONOS satellite images by improving the accuracy of a RPC(Rational Polynomial Coefficient) model. For this purpose, we developed the algorithm to adjust a RPC model, and could improve the accuracy of a RPC model with this algorithm and geographically well-distributed GCPs(Ground Control Points). Furthermore, when a RPC model was adjusted with this algorithm, the effects of geographic distribution and the number of GCPs on the accuracy of the adjusted RPC model was tested. The results showed that the accuracy of the adjusted RPC model is affected more by the distribution of GCPs than by the number of GCPs. On the basis of this result, the algorithm using pseudo_GCPs was developed to improve the accuracy of a RPC model in case the distribution of GCPs was poor and the number of GCPs was not enough to adjust the RPC model. So, even if poorly distributed GCPs were used, the geographically adjusted RPC model could be obtained by using pseudo_GCPs. The less the pseudo_GCPs were used -that is, GCPs were more weighted than pseudo_GCPs in the observation matrix-, the more accurate the adjusted RPC model could be obtained, Finally, to test the validity of these algorithms developed in this study, we extracted 3D object-space coordinates using RPC models adjusted with these algorithms and a stereo pair of IKONOS satellite images, and tested the accuracy of these. The results showed that 3D object-space coordinates extracted from the adjusted RPC models was more accurate than those extracted from original RPC models. This result proves the effectiveness of the algorithms developed in this study.

Centrifuge Test for Earthquake Response of Structures with Basements (지하층이 있는 구조물의 지진응답을 위한 원심모형실험)

  • Kim, Dong Kwan;Park, Hong Gun;Kim, Dong Soo;Ha, Jeong Gon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.223-234
    • /
    • 2016
  • To investigate earthquake responses of structures with basements affected by soil deposits, centrifuge tests were performed using an in-flight earthquake simulator. The test specimen was composed of a single-degree-of-freedom structure model, a basement and sub-soil deposits in a centrifuge container. The test parameters were the dynamic period of the structure model, boundary conditions of the basement, existence of soil deposits, centrifugal acceleration level, and type and level of input earthquake accelerations. When soil deposits did not exist, the earthquake responses of the structures with fixed basement were significantly greater than those of the structure without basement. Also, the earthquake responses of the structures with the fixed basement surrounded by soil deposits were amplified, but the amplifications were smaller than those of the structures without basement. The earthquake responses of the structures with the half-embedded basement in the soil deposits were greater than those estimated by the fixed base model using the measured free-field ground motion. The test showed that the basement and the soil deposit should be simultaneously considered in the numerical analysis model, and the stiffness of the half-embedded was not effective.

Shake-table responses of a low-rise RC building model having irregularities at first story

  • Lee, Han Seon;Jung, Dong Wook;Lee, Kyung Bo;Kim, Hee Cheul;Lee, Kihak
    • Structural Engineering and Mechanics
    • /
    • v.40 no.4
    • /
    • pp.517-539
    • /
    • 2011
  • This paper presents the seismic responses of a 1:5-scale five-story reinforced concrete building model, which represents a residential apartment building that has a high irregularity of weak story, soft story, and torsion simultaneously at the ground story. The model was subjected to a series of uni- and bi-directional earthquake simulation tests. Analysis of the test results leads to the following conclusions: (1) The model survived the table excitations simulating the design earthquake with the PGA of 0.187 g without any significant damages, though it was not designed against earthquakes; (2) The fundamental mode was the torsion mode. The second and third orthogonal translational modes acted independently while the torsion mode showed a strong correlation with the predominant translational mode; (3) After a significant excursion into inelastic behavior, this correlation disappeared and the maximum torsion and torsion deformation remained almost constant regardless of the intensity of the two orthogonal excitations; And, (4) the lateral resistance and stiffness of the critical columns and wall increased or decreased significantly with the large variation of acting axial forces caused by the high bi-directional overturning moments and rocking phenomena under the bi-directional excitations.

Numerical study on self-sustainable atmospheric boundary layer considering wind veering based on steady k-ε model

  • Feng, Chengdong;Gu, Ming
    • Wind and Structures
    • /
    • v.30 no.1
    • /
    • pp.69-83
    • /
    • 2020
  • Modelling incompressible, neutrally stratified, barotropic, horizontally homogeneous and steady-state atmospheric boundary layer (ABL) is an important aspect in computational wind engineering (CWE) applications. The ABL flow can be viewed as a balance of the horizontal pressure gradient force, the Coriolis force and the turbulent stress divergence. While much research has focused on the increase of the wind velocity with height, the Ekman layer effects, entailing veering - the change of the wind velocity direction with height, are far less concerned in wind engineering. In this paper, a modified k-ε model is introduced for the ABL simulation considering wind veering. The self-sustainable method is discussed in detail including the precursor simulation, main simulation and near-ground physical quantities adjustment. Comparisons are presented among the simulation results, field measurement values and the wind profiles used in the conventional wind tunnel test. The studies show that the modified k-ε model simulation results are consistent with field measurement values. The self-sustainable method is effective to maintain the ABL physical quantities in an empty domain. The wind profiles used in the conventional wind tunnel test have deficiencies in the prediction of upper-level winds. The studies in this paper support future practical super high-rise buildings design in CWE.

Evaluation of Ultimate Lateral Resistance for Single Pile Using Strain Wedge Model in Sand (모래지반에서 쐐기모델을 이용한 단말뚝의 극한수평저항력 산정)

  • Kim, Ji-Seong;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.12
    • /
    • pp.15-22
    • /
    • 2016
  • The magnitude of the lateral resistance that resists the lateral movement of the pile is controlled by the amount of the pile movement and the strength and stiffness of soil. In this paper, we proposed an equation which produces the ultimate lateral resistance of the laterally loaded single pile in sand using the strain wedge model of the soil deformation. The ultimate lateral resistance in strain wedge model is composed of earth pressure of wedge rear, the shear resistance on the side of the wedge, and the frictional resistance between pile and ground. The ultimate lateral resistance determined by the proposed equation was compared with the Ashour, F.D.M., field test in sand. As a result, the error of the proposed equation and Ashour theory, field test, F.D.M were respectively 1.03%, 0.40~3.32%, 6.02%.

Analysis of Non-linearity Characteristic of GOCI (COMS 해양탑재체의 비선형성 특성 분석)

  • Kang, Geum-Sil;Youn, Heong-Sik
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 2009
  • The Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of ocean-color around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this study, the radiometric model of GOCI, which is constructed based on the functional model of sub-system, is introduced. Non-linearity for each channel is analyzed in terms of linear gain and nonlinear gain by using the radiometric model. The non-linearity characteristic is validated by using test data which have been achieved during ground test at payload level. The non-linearity $G^3$/b shows identical characteristic for all channels.

  • PDF

A Study on Development of Scaled-down HVDC Model (HVDC의 축소형 모델 개발에 관한 연구)

  • Ahn, Jong-Bo;Yun, Jae-Young;Kim, Kook-Hun;Lee, Jong-Moo;Kim, Jong-Moon;Lee, Ki-Do
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.219-221
    • /
    • 1999
  • HVDC(High Voltage Direct Current) transmission system was constructed between Cheju island and mainland Haenam and has been operating commercially since 1998. But research activities in this area are not so much. That is caused by the facts that HVDC is large scale system and it is not so easy to implement and to test. Though such simulation tools as RTDS(Real Time Digital Simulator) and EMTDC can be useful, these have limitations for actual control and protective system design. Therefore scaled-down HVDC model was developed for the purpose of researches at operating technique, control and protection methods. The design of this model was based on real Cheju-Haenam HVDC system. And additionally faults simulator such as ground fault, short-circuit and change of impedance in transmission line is equipped for analysis of these faults. Control system of the model was implemented fully digitally. So it is very easy for the researchers to develope control and protection algorithm and to test the performance.

  • PDF

Wind tunnel modeling of flow over mountainous valley terrain

  • Li, C.G.;Chen, Z.Q.;Zhang, Z.T.;Cheung, J.C.K.
    • Wind and Structures
    • /
    • v.13 no.3
    • /
    • pp.275-292
    • /
    • 2010
  • Wind tunnel experiments were conducted to investigate the wind characteristics in the mountainous valley terrain with 4 simplified valley models and a 1:500 scale model of an existing valley terrain in the simulated atmospheric neutral boundary layer model. Measurements were focused on the mean wind flow and longitudinal turbulence intensity. The relationship between hillside slopes and the velocity speed-up effect were studied. By comparing the preliminary results obtained from the simplified valley model tests and the existing terrain model test, some fundamental information was obtained. The measured results indicate that it is inappropriate to describe the mean wind velocity profiles by a power law using the same roughness exponent along the span wise direction in the mountainous valley terrain. The speed-up effect and the significant change in wind direction of the mean flow were observed, which provide the information necessary for determining the design wind speed such as for a long-span bridge across the valley. The longitudinal turbulence intensity near the ground level is reduced due to the speed-up effect of the valley terrain. However, the local topographic features of a more complicated valley terrain may cause significant perturbation to the general wind field characteristics in the valley.

Full-Scale Model Test of Vertical Drain Materials using Recycled Aggregates and Crushed Stone (순환골재와 쇄석을 이용한 연직배수재의 실내모형실험)

  • Lee, Dal-Won;Lee, Jeong-Jun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.5
    • /
    • pp.103-111
    • /
    • 2012
  • In this study, the full-scale laboratory model test on utilization of recycled aggregates and crushed stone as vertical drains to use an alternative material of sand in soft ground is performed. The settlement and pore water pressure were measured to evaluate the discharge capacity and filed application, and the results were compared and analyzed through the finite element method. The measured and estimated settlement in all vertical drain materials decreases gradually with the load increase. The measured settlement 6.55~8.63 mm, and the estimated by the Hyperbolic model was 7.45~7.92 mm. So the model used for the analysis can be applied to the settlement estimation of the actual field. The variations of pore water pressure with time showed constantly regardless of the load in all vertical drainage materials. The pore water pressure was similarity to that of sand after rapid drawdown. Therefore, it was applicable to the field because discharge capacity was enough to be an alternative material to the sand which had been being used as the vertical drains.