• Title/Summary/Keyword: ground model test

Search Result 1,134, Processing Time 0.029 seconds

Seismic collapse safety of high-rise RC moment frames supported on two ground levels

  • Wu, Yun-Tian;Zhou, Qing;Wang, Bin;Yang, Yeong-Bin;Lan, Tian-Qing
    • Earthquakes and Structures
    • /
    • v.14 no.4
    • /
    • pp.349-360
    • /
    • 2018
  • Reinforced concrete (RC) moment frames supported on two ground levels have been widely constructed in mountainous areas with medium to high seismicity in China. In order to investigate the seismic collapse behavior and risk, a scaled frame model was tested under constant axial load and reversed cyclic lateral load. Test results show that the failure can be induced by the development of story yielding at the first story above the upper ground. The strong column and weak beam mechanism can be well realized at stories below the upper ground. Numerical analysis model was developed and calibrated with the test results. Three pairs of six case study buildings considering various structural configurations were designed and analyzed, showing similar dynamic characteristics between frames on two ground levels and flat ground of each pair. Incremental dynamic analyses (IDA) were then conducted to obtain the seismic collapse fragility curves and collapse margin ratios of nine analysis cases designated based on the case study buildings, considering amplification of earthquake effect and strengthening measures. Analysis results indicate that the seismic collapse safety is mainly determined by the stories above the upper ground. The most probable collapse mechanism may be induced by the story yielding of the bottom story on the upper ground level. The use of tie beam and column strengthening can effectively enhance the seismic collapse safety of frames on two ground levels.

Model Tests for the Effect of Settlement Restraint of Adjacent Structure During Tunnel Excavation (터널굴착에 따른 인접 구조물 침하 억제효과에 관한 실내모형실험)

  • 유문오;임종철;고호성;박이근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.141-148
    • /
    • 2000
  • In this study, differential settlements of adjacent structure and behaviour of ground during tunnel excavation and the effect of micropile installed to preserve differential settlement of structure are measured and analyzed by model test. In the test results, the effective range of reinforcement is suggested.

  • PDF

Ground Vibration Test for Korea Sounding Rocket - II PFM (과학로켓 2호(KSR-II) 준비행 모델의 지상 진동 시험)

  • 우성현;김홍배;문상무;이상설;문남진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.546-551
    • /
    • 2001
  • Space Test Department at KARI(Korea Aerospace Research Institute) plans to carry out the GVT(Ground Vibration Test) for the KSR(Korea Sounding Rocket)-III FM(Flight Model) which is being developed by Space Technology R&D Division. KSR-III will be an intermediate to the launch vehicle capable of carrying satellites to their orbits. GVT offers very important information to predict the behavior of KSR in its operation, and to develop the flight control and aerodynamic analysis. For development of test facilities, testing and analysis methods which can be used for the future test, Space Test Department has performed the GVT with KSR-II PFM(Proto-Flight Model) at Satellite Integration & Test Center of KARl This paper discusses the procedures, techniques and the results of it. In this test, to simulate free-free condition, test object hung in the air by 4 bungee cords specially devised. The GVT was carried out using pure random excitation technique with MIMO(Multi-Input-Multi-Output) method with three electromagnetic shakers, and poly-reference parameter estimation was used to identify the modal parameters. As the result of the test, 11 mode shapes and modal parameters below 200㎐ were identified and compared with analytical results.

  • PDF

Behavior of the Ground under a Building due to Adjacent Ground Excavation (근접굴착시 건물 하부 지반의 거동)

  • Lee, Jong-Min
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.4
    • /
    • pp.49-55
    • /
    • 2018
  • A pre-load of bracing was imposed to prevent the horizontal displacement on the strut of the braced wall adjacent to the building during the ground excavation. For this purpose, large scale model tests were conducted, without and with pre-load on braced wall. Adjacent building load was also imposed in different locations, that were 0 m, 1D, 2D on ground surface. In this study, model tests in 1:10 scale were performed in real construction sequences, and adjacent building was 12 m in width and the size of model test pit was 2 m in width, 6 m in height, and 4 m in length. As a result, it was found that the stability of the existing building adjacent to the braced wall within Rankine's active zone could be greatly enhanced when the horizontal displacement of the braced wall was reduced by applying a pre-load. which was larger than the designated axial force on the strut of the braced wall.

Non-linear dynamic assessment of low-rise RC building model under sequential ground motions

  • Haider, Syed Muhammad Bilal;Nizamani, Zafarullah;Yip, Chun Chieh
    • Structural Engineering and Mechanics
    • /
    • v.74 no.6
    • /
    • pp.789-807
    • /
    • 2020
  • Multiple earthquakes that occur during short seismic intervals affect the inelastic behavior of the structures. Sequential ground motions against the single earthquake event cause the building structure to face loss in stiffness and its strength. Although, numerous research studies had been conducted in this research area but still significant limitations exist such as: 1) use of traditional design procedure which usually considers single seismic excitation; 2) selecting a seismic excitation data based on earthquake events occurred at another place and time. Therefore, it is important to study the effects of successive ground motions on the framed structures. The objective of this study is to overcome the aforementioned limitations through testing a two storey RC building structural model scaled down to 1/10 ratio through a similitude relation. The scaled model is examined using a shaking table. Thereafter, the experimental model results are validated with simulated results using ETABS software. The test framed specimen is subjected to sequential five artificial and four real-time earthquake motions. Dynamic response history analysis has been conducted to investigate the i) observed response and crack pattern; ii) maximum displacement; iii) residual displacement; iv) Interstorey drift ratio and damage limitation. The results of the study conclude that the low-rise building model has ability to resist successive artificial ground motion from its strength. Sequential artificial ground motions cause the framed structure to displace each storey twice in correlation with vary first artificial seismic vibration. The displacement parameters showed that real-time successive ground motions have a limited impact on the low-rise reinforced concrete model. The finding shows that traditional seismic design EC8 requires to reconsider the traditional design procedure.

Numerical simulation of the effect of confining pressure and tunnel depth on the vertical settlement using particle flow code (with direct tensile strength calibration in PFC Modeling)

  • Haeri, Hadi;Sarfarazi, Vahab;Marji, Mohammad Fatehi
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.433-446
    • /
    • 2020
  • In this paper the effect of confining pressure and tunnel depth on the ground vertical settlement has been investigated using particle flow code (PFC2D). For this perpuse firstly calibration of PFC2D was performed using both of tensile test and triaxial test. Then a model with dimention of 100 m × 100 m was built. A circular tunnel with diameter of 20 m was drillled in the middle of the model. Also, a rectangular tunnel with wide of 10 m and length of 20 m was drilled in the model. The center of tunnel was situated 15 m, 20 m, 25 m, 30 m, 35 m, 40 m, 45 m, 50 m, 55 m and 60 m below the ground surface. these models are under confining pressure of 0.001 GPa, 0.005 GPa, 0.01 GPa, 0.03 GPa, 0.05 GPa and 0.07 GPa. The results show that the volume of colapce zone is constant by increasing the distance between ground surface and tunnel position. Also, the volume of colapce zone was increased by decreasing of confining pressure. The maximum of settlement occurs at the top of the tunnel roof. The maximum of settlement occurs when center of tunnel was situated 15 m below the ground surface. The settlement decreases by increasing the distance between tunnel center line and measuring circles in the ground surface. The minimum of settlement occurs when center of circular tunnel was situated 60 m below the surface ground. Its to be note that the settlement increase by decreasing the confining pressure.

Characteristics of Bearing Capacity of Soft Ground Reinforced by Vertical Mat (연직 매트로 보강된 연약지반의 지지력 특성)

  • Shin, Eun-Chul;Lee, Gil-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.6
    • /
    • pp.83-90
    • /
    • 2012
  • Generally, the effect of the cement deep mixing method on the improvement of clay ground is far greater than the effect of physical improvement. Although it leads to great improvement strength in the initial stage, there are not many constructional precedents in Korea and it is hard to manage quality according to the cement-clay mixing method. In order to figure out the strength characteristics according to the mixing ratio of cement, sand, and clay and the improvement characteristics of weak ground according to the forms of the specimens to be improved, marine clay was used in this study to conduct the uniaxial compression test and soil bin model test. The test piece specimens for the uniaxial compression test were mixed with sand in a fixed ratio with the criterion of the water cement ratio. The cement was mixed with clay in the ratios of 10%, 20%, 30%, and 40% to the clay weight. The moisture content of the soil ground was made in the ratios of 40%, 60%, and 80%. The test piece specimens went through curing by moistening for 7, 14, and 28 days and underwent the uniaxial compression test according to the curing period. For the bearing test, the soil bin models were made and the ground improved in the Mat type was formed. After that, the bearing strength was compared in this study according to the improvement ratio and analyzed the intervening effect between the walls of the improved specimens.

Computational modeling of buried blast-induced ground motion and ground subsidence

  • Zhang, Zhi-Chao;Liu, Han-Long;Pak, Ronald Y.S.;Chen, Yu-Min
    • Geomechanics and Engineering
    • /
    • v.7 no.6
    • /
    • pp.613-631
    • /
    • 2014
  • To complement the method of field-scale seismic ground motion simulations by buried blast techniques, the application and evaluation of the capability of a numerical modeling platform to simulate buried explosion-induced ground motion at a real soil site is presented in this paper. Upon a layout of the experimental setup at a level site wherein multiple charges that were buried over a large-diameter circle and detonated in a planned sequence, the formulation of a numerical model of the soil and the explosives using the finite element code LS-DYNA is developed for the evaluation of the resulting ground motion and surface subsidence. With a compact elastoplastic cap model calibrated for the loess soils on the basis of the site and laboratory test program, numerical solutions are obtained by explicit time integration for various dynamic aspects and their relation with the field blast experiment. Quantitative comparison of the computed ground acceleration time histories at different locations and induced spatial subsidence on the surface afterwards is given for further engineering insights in regard to the capabilities and limitations of both the numerical and experimental approaches.

Experimental Study on Stress Sharing Behavior of Composition Ground Improved by Sand Compaction Piles with Low Replacement Area Ratio (저치환율 모래다짐말뚝에 의한 복합지반의 응력분담거동에 대한 실험적 연구)

  • 유승경
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.253-261
    • /
    • 2003
  • Mechanical behavior of composition pound improved by sand compaction pile (SCP) with low replacement area ratio could be more significantly affected by mechanical interaction between sand piles and clays than that of clay ground improved by SD or SCP with high replacement area ratio. It is essential to elucidate the mechanical interaction in the improved clay ground, in order to accurately estimate behavior in reducing settlement of the improved ground and increasing strength of clays. In this paper, through a series of model tests of composition ground improved by SCP with low replacement area ratio, each mechanical behaviors of sand piles and clays in the composition ground during consolidation was elucidated, together with stress sharing behavior between sand piles and clays.

Ground Deformation Evaluation during Vertical Shaft Construction through Digital Image Analysis

  • Woo, Sang-Kyun;Woo, Sang Inn;Kim, Joonyoung;Chu, Inyeop
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.285-293
    • /
    • 2021
  • The construction of underground structures such as power supply lines, communication lines, utility tunnels has significantly increased worldwide for improving urban aesthetics ensuring citizen safety, and efficient use of underground space. Those underground structures are usually constructed along with vertical cylindrical shafts to facilitate their construction and maintenance. When constructing a vertical shaft through the open-cut method, the walls are mostly designed to be flexible, allowing a certain level of displacement. The earth pressure applied to the flexible walls acts as an external force and its accurate estimation is essential for reasonable and economical structure design. The earth pressure applied to the flexible wall is closely interrelated to the displacement of the surrounding ground. This study simulated stepwise excavation for constructing a cylindrical vertical shaft through a centrifugal model experiment. One quadrant of the axisymmetric vertical shaft and the ground were modeled, and ground excavation was simulated by shrinking the vertical shaft. The deformation occurring on the entire ground during the excavation was continuously evaluated through digital image analysis. The digital image analysis evaluated complex ground deformation which varied with wall displacement, distance from the wall, and ground depth. When the ground deformation data accumulate through the method used in this study, they can be used for developing shaft wall models in future for analyzing the earth pressure acting on them.