• Title/Summary/Keyword: ground mode

Search Result 645, Processing Time 0.031 seconds

Estimation of Critical Height of Embankment to Mobilize Soil Arching in Pile-supported Embankment (말뚝지지성토지반 내 지반아칭이 발달할 수 있는 한계성토고의 평가)

  • Hong, Won-Pyo;Hong, Seong-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.11
    • /
    • pp.89-98
    • /
    • 2010
  • A method to design a critical height of embankments is presented so as to mobilize fully soil arching in pile-supported embankments. The behavior of the load transfer of embankment weights on pile cap beams was investigated by a series of model tests performed on pile-supported embankments with relatively wide space between cap beams. The model tests explained that the behavior of the load transfer depended very much on the height of embankments, because soil arching could be mobilized in pile-supported embankments only under enough high embankments. The measured vertical loads on cap beams coincided with the predicted ones estimated by the theoretical equations, which have been presented in the previous studies on the basis of load transfer mechanisms according to either the punching shear failure mode during low filling stage or the soil arching failure mode during high filling stage. The mechanism of the load transfer was shifted beyond a critical height of embankment from the punching shear mechanism to the soil arching mechanism. Therefore, in order to mobilize soil arching in pile-supported embankments, the embankments should be designed at least higher than the critical height. A theoretical equation to estimate the critical height could be derived by equalizing the vertical loads estimated by the load transfer mechanisms on the basis of both the punching shear and the soil arching. The derived theoretical equation could predict very well the experimental critical height of embankment.

Study on the Improvement of Gill Nets and Trap Nets Fishing for the Resource Management at the Coastal Area of Yellow Sea -On the Present States of Gill Nets and Trap Nets Fishing and Body Length Distribution of Main Catch at the Coastal Area of Yellow Sea- (서해구 자원관리형 지망ㆍ통발 어구어법 기술개발에 관한 연구 - 서해구 자망ㆍ통발어업의 현황과 주어획물의 체장분포 -)

  • 장호영;조봉곤;박종수;두성균
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • In order to study on the improvement of gill nets and trap nets fishing for the management of fisheries resource in the coastal area of Yellow Sea, we have investigated the general present condition of those fishing, and the actual fishing operation of gill nets for croaker and trap nets for rock shell which is called the the other trap nets, and then measured the body length of croaker and blue shell caught by their fishing vessels. The results are as follows ; 1. The total number of permission for coastal fishing are 12,944 cases, but the number of operation for coastal fishing are 7,558 cases in the coastal area of Yellow Sea. Among the total number of permission, the gill nets fishing are 5,154 cases with 39.8% but even so the number of operation are 3,724 cases, the trap nets fishing are 1,025 cases with 7.6% but even so the number of operation are 662 cases. On the fishing ratio, the gill nets and trap nets fishing are comparatively higher than the other fishing with 72.3% and 64.6%, respectively. 2. The main fishing period of gill nets for croaker is from the middle of July to early of September, and the main fishing grounds are sandymud bottom of 15-50m in depth around the islands of southern parts of western coastal area, and the fishing operation carry out 1∼2 times per day in flood tide and nets hauling conduct in 1∼2 hours after drifting with current. 3. The distribution range of body length of 139 croakers, which are caught in the gill nets, are 43.0∼120.0㎝ and the mode is 85.0㎝. 4. The main fishing period of trap nets for rock shell which is called the other trap nets is all the year round except the catching period of blue crab from early of September to the middle of October, and the main fishing ground are the sandymud bottom of 10∼20m in depth, and nets hauling conduct in next day after nets casting. 5. The distribution range of maximum carapace of 5,372 rock shells are 4.5∼8.5㎝ and the mode is 7.5㎝.

Capacity Spectrum Method Based on Inelastic Displacement Ratio (비탄성변위비를 이용한 능력 스펙트럼법)

  • Han, Sang-Whan;Bae, Mun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2008
  • In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

A Low Leakage SRAM Using Power-Gating and Voltage-Level Control (파워게이팅과 전압레벨조절을 이용하여 누설전류를 줄인 SRAM)

  • Yang, Byung-Do;Cheon, You-So
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.8
    • /
    • pp.10-15
    • /
    • 2012
  • This letter proposes a low-leakage SRAM using power-gating and voltage-level control. The power-gating scheme significantly reduces leakage power by shutting off the power supply to blank memory cell blocks. The voltage-level control scheme saves leakage power by raising the ground line voltage of SRAM cells and word line decoders in data-stored memory cell blocks. A $4K{\times}8bit$ SRAM chip was fabricated using a 1.2V $0.13{\mu}m$ CMOS process. The leakage powers are $1.23{\sim}9.87{\mu}W$ and $1.23{\sim}3.01{\mu}W$ for 0~100% memory usage in active and sleep modes, respectively. During the sleep mode, the proposed SRAM consumes 12.5~30.5% leakage power compared to the conventional SRAM.

Effect of geometrical configuration on seismic behavior of GFRP-RC beam-column joints

  • Ghomia, Shervin K.;El-Salakawy, Ehab
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.313-326
    • /
    • 2020
  • Glass fiber-reinforced polymer (GFRP) bars have been introduced as an effective alternative for the conventional steel reinforcement in concrete structures to mitigate the costly consequences of steel corrosion. However, despite the superior performance of these composite materials in terms of corrosion, the effect of replacing steel reinforcement with GFRP on the seismic performance of concrete structures is not fully covered yet. To address some of the key parameters in the seismic behavior of GFRP-reinforced concrete (RC) structures, two full-scale beam-column joints reinforced with GFRP bars and stirrups were constructed and tested under two phases of loading, each simulating a severe ground motion. The objective was to investigate the effect of damage due to earthquakes on the service and ultimate behavior of GFRP-RC moment-resisting frames. The main parameters under investigation were geometrical configuration (interior or exterior beam-column joint) and joint shear stress. The performance of the specimens was measured in terms of lateral load-drift response, energy dissipation, mode of failure and stress distribution. Moreover, the effect of concrete damage due to earthquake loading on the performance of beam-column joints under service loading was investigated and a modified damage index was proposed to quantify the magnitude of damage in GFRP-RC beam-column joints under dynamic loading. Test results indicated that the geometrical configuration significantly affects the level of concrete damage and energy dissipation. Moreover, the level of residual damage in GFRP-RC beam-column joints after undergoing lateral displacements was related to reinforcement ratio of the main beams.

Numerical Study on the Improvement Heat and Smoke Control System in Old Subway Station on Train Fire (수치해석을 통한 노후 지하철 역사 내 열차 화재 시 제연모드 개선에 관한 연구)

  • Kim, Hyo-Gyu;Baek, Doo-San;Yoo, Yong-Ho
    • Fire Science and Engineering
    • /
    • v.31 no.3
    • /
    • pp.88-96
    • /
    • 2017
  • The subway can transport a lot of people at a certain route at once, and the railway and the platform are underground, so it is advantageous to use the ground space efficiently. But If a fire occurs in a subway that is used by an unspecified number of people, such as the Daegu Subway Fire Disaster, many casualties can occur. As a result of the previous research, it was confirmed that the performance of the ventilation system of the old subway platform was remarkably degraded. Therefore, in this study, based on the experimental results of the previous research, we confirmed the flow of the hot and CO flows according to the ventilation mode in the case of fire by three - dimensional numerical analysis. As a result, it was found that the old ventilation system could not maintain the hot air temperature below the reference value for 4 minutes based on the evacuation time of the platform, and when the ventilation performance was enhanced by adding Oversized Exhaust Ports at the upper part of the platform, And the temperature of the heat flow can be maintained.

Development of High Resolution SAR(NexSAR) with 30 cm Resolution (분해능 30 cm급의 고해상도 SAR(NexSAR) 개발)

  • Kong, Young-Kyun;Kim, Hyung-Chul;Kim, Seung-Hwan;Kim, Soo-Bum;Yim, Jae-Hag
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.2
    • /
    • pp.183-192
    • /
    • 2009
  • SAR(Synthetic Aperture Radar) is an all-weather imaging radar and is widely used in military and civil application. Especially high-resolution SAR images are very important in military purpose because it can be used at target recognition application. LIG Nex1 developed a SAR system called NexSAR with bandwidth of 600 MHz and resolution of 30 cm to obtain technologies required for high-resolution SAR. To achieve 600 MHz bandwidth of waveform generator, two DDSs are used and its output signals are SSB modulated. And deramp technique is used to reduce the sampling rate of ADC at high resolution mode. NexSAR has stripmap and spotlight modes and its functionality and performances are evaluated through ground and flight tests.

Stochastic Analysis in the Generation of Floor Response Spectra for Liner Systems with Proportional Damping (추계학적(推計學的) 해석법(解析法)에 의한 선형비례감쇠(線形比例減衰) 시스템의 층응답(層應答)스펙트럼)

  • Park, Young Suk;Seo, Jeong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.1
    • /
    • pp.77-85
    • /
    • 1988
  • A stochchastic analysis procedure of generating floor response spectra for proportionally damped linear systems subject to earthquake loading is presented. Theories of random vibration and mode acceleration method are used in the formulation of governing equations. The structure-oscillator interaction is not considered. It is assumed that the input motions and oscillator responses are stationary Gaussian processes with mean zero. The nonstationary characteristics of earthquake motion are incorporated in the peak factor which is based on Vanmarcke's theory. Floor response spectra for both resonance and non-resonance cases are calculated under the assumption that the peak factors for structure and oscillator are equal to that for ground response spectrum. The validity of this method is demonstrated by comparing the results obtained by proposed method with those by time history analyses. The results obtained by this method are conservative and accurate with tolerable precision. This method saves much computing time compared with time history analysis method.

  • PDF

Compensate Voltage Drop for Autotransformer-Fed AC Electric Railroad System with Single-Phase STATCOM (STATCOM을 이용한 교류 전기철도 급전시스템의 전압강하 보상)

  • 정현수;이승혁;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.53-60
    • /
    • 2002
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode, and single-phase STATCOM(Static Synchronous Compensator) which has an effect on electric railroad system. An AC electric railroad is rapidly changing single-phase feeding electric power. To avoid voltage fluctuation under single phase loads, electric power should be received from a large source. The system modeling theory is based on the solution of algebraic. The AC electric railroad load model is nonlinear. Therefore this paper is considered nonlinear load using PSCAD/EMTDC. And the proposed modeling method is considered the line self-impedances and mutual-impedances that techniques for the AC electric railroad system modeling analysis, and that single-phase STATCOM can reliably compensate the voltage drop. In the case study, the allowance range of feeding voltage is 22.5∼27.5 kV, AT-fed AC electric railroad system circuit is analyzed by loop equation both normal and extension modes. The simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The results show that single-phase STATCOM can reduce the voltage drop in the feeding circuit and improve the power quality at AC electric railroad system by compensating the reactive power.

DEVELOPMENT OF A MONITORING SYSTEM FOR AN INFRARED CAMERA (적외선카메라를 위한 모니터 시스템 개발)

  • Cha, Sang-Mok;Moon, Bong-Kon;Jin, Ho;Yuk, In-Soo;Nam, Uk-Won;Lee, Sung-Ho;Park, Yung-Sik;Cho, Seoung-Hyun;Mok, Seung-Won;Kim, Chun-Hwey
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.4
    • /
    • pp.425-434
    • /
    • 2006
  • The KASINICS (KASI Nea.-Infrared Camera System) is a ground-based instrument developed by the Korea Astronomy and Space Science Institute (KASI). We developed a temperature and vacuum monitoring system for operating the KASINICS. The system consists of hardware and software parts. The acquired data we saved on a hard disk in a real-time mode. This system on also be applied to general cryogenic instruments. We tested our monitoring system for the cooling and vacuum performance of the KASINICS. The results show that our system is efficient and stable for the operation of the KASINICS.