• Title/Summary/Keyword: ground granulated blast-furnace slag (GGBS)

Search Result 81, Processing Time 0.021 seconds

Reactivity of aluminosilicate materials and synthesis of geopolymer mortar under ambient and hot curing condition

  • Zafar, Idrees;Tahir, Muhammad Akram;Hameed, Rizwan;Rashid, Khuram;Ju, Minkwan
    • Advances in concrete construction
    • /
    • v.13 no.1
    • /
    • pp.71-81
    • /
    • 2022
  • Aluminosilicate materials as precursors are heterogenous in nature, consisting of inert and partially reactive portion, and have varying proportions depending upon source materials. It is essential to assess the reactivity of precursor prior to synthesize geopolymers. Moreover, reactivity may act as decisive factor for setting molar concentration of NaOH, curing temperature and setting proportion of different precursors. In this experimental work, the reactivities of two precursors, low calcium (fly ash (FA)) and high calcium (ground granulated blast furnace slag (GGBS)), were assessed through the dissolution of aluminosilicate at (i) three molar concentrations (8, 12, and 16 M) of NaOH solution, (ii) 6 to 24 h dissolution time, and (iii) 20-100℃. Based on paratermeters influencing the reactivity, different proportions of ternary binders (two precursors and ordinary cement) were activated by the combined NaOH and Na2SiO3 solutions with two alkaline activators to precursor ratios, to synthesize the geopolymer. Reactivity results revealed that GGBS was 20-30% more reactive than FA at 20℃, at all three molar concentrations, but its reactivity decreased by 32-46% with increasing temperature due to the high calcium content. Setting time of geopolymer paste was reduced by adding GGBS due to its fast reactivity. Both GGBS and cement promoted the formation of all types of gels (i.e., C-S-H, C-A-S-H, and N-A-S-H). As a result, it was found that a specified mixing proportion could be used to improve the compressive strength over 30 MPa at both the ambient and hot curing conditions.

Porous concrete with optimum fine aggregate and fibre for improved strength

  • Karanth, Savithri S.;Kumar, U. Lohith;Danigond, Naveen
    • Advances in concrete construction
    • /
    • v.8 no.4
    • /
    • pp.305-309
    • /
    • 2019
  • Pervious concrete pavements are the need of the day to avoid urban flooding and to facilitate ground water recharge. However, the strength of pervious or porous concrete is considerably less compared to conventional concrete. In this experimental investigation, an effort is made to improve the strength of pervious concrete by adopting fibres and a small amount of fine aggregate. A porous concrete with cement to aggregate ratio of 1:5 and a water-powder ratio of 0.4 is adopted. 30% of the cement is replaced by cementitious material ground granulated blast furnace slag (GGBS) for better strength and workability. Recron fibres at a dosage of 0.5, 1.0 and 1.5% by weight of cement were included to improve the impact strength. Since concrete pavements are subjected to impact loads, the impact strength was also calculated by "Drop ball method" in addition to compressive strength. The effect of fine aggregate and recron fibres on workability, porosity, compressive and impact strength was studied. The investigations have shown that 20% inclusion of fine aggregate and 1.5% recron fibres by weight of cement give better strength with an acceptable range of porosity.

Impact of aggressive exposure conditions on sustainable durability, strength development and chloride diffusivity of high performance concrete

  • Al-Bahar, Suad;Husain, A.
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.1
    • /
    • pp.35-48
    • /
    • 2015
  • The main objective of this study is to evaluate the long-term performance of various concrete composites in natural marine environment prevailing in the Gulf region. Durability assessment studies of such nature are usually carried out under aggressive environments that constitute seawater, chloride and sulfate laden soils and wind, and groundwater conditions. These studies are very vital for sustainable development of marine and off shore reinforced concrete structures of industrial design such as petroleum installations. First round of testing and evaluation, which is presented in this paper, were performed by standard tests under laboratory conditions. Laboratory results presented in this paper will be corroborated with test outcome of ongoing three years field exposure conditions. The field study will include different parameters of investigation for high performance concrete including corrosion inhibitors, type of reinforcement, natural and industrial pozzolanic additives, water to cement ratio, water type, cover thickness, curing conditions, and concrete coatings. Like the laboratory specimens, samples in the field will be monitored for corrosion induced deterioration signs and for any signs of failureover initial period ofthree years. In this paper, laboratory results pertaining to microsilica (SF), ground granulated blast furnace slag (GGBS), epoxy coated rebars and calcium nitrite corrosion inhibitor are very conclusive. Results affirmed that the supplementary cementing materials such as GGBS and SF significantly impacted and enhanced concrete resistivity to chloride ions penetration and hence decrease the corrosion activities on steel bars protected by such concretes. As for epoxy coated rebars applications under high chloride laden conditions, results showed great concern to integrity of the epoxy coating layer on the bar and its stability. On the other hand corrosion inhibiting admixtures such as calcium nitrite proved to be more effective when used in combination with the pozzolanic additives such as GGBS and microsilica.

Sustainable SCC with high volume recycled concrete aggregates and SCMs for improved mechanical and environmental performances

  • Zhanggen Guo;Ling Zhou;Qiansen Sun;Zhiwei Gao;Qinglong Miao;Haixia Ding
    • Advances in concrete construction
    • /
    • v.16 no.6
    • /
    • pp.303-316
    • /
    • 2023
  • Using industrial wastes and construction and demolition (C&D) wastes is potentially advantageous for concrete production in terms of sustainability improvement. In this paper, a sustainable Self-Compacting Concrete (SCC) made with industrial wastes and C&D wastes was proposed by considerably replacing natural counterparts with recycled coarse aggregates (RCAs) and supplementary cementitious materials (SCMs) (i.e., Fly ash (FA), ground granulated blast furnace slag (GGBS) and silica fume (SF)). A total of 12 SCC mixes with various RCAs and different combination SCMs were prepared, which comprise binary, ternary and quaternary mixes. The mechanical properties in terms of compressive strength and static elasticity modulus of recycled aggregates (RA-SCC) mixes were determined and analyzed. Microstructural study was implemented to analyze the reason of improvement on mechanical properties. By means of life cycle assessment (LCA) method, the environmental impacts of RA-SCC with various RCAs and SCMs were quantified, analyzed and compared in the system boundary of "cradle-to-gate". In addition, the comparison of LCA results with respect to mechanical properties was conducted. The results demonstrate that the addition of proposed combination SCMs leads to significant improvement in mechanical properties of quaternary RA-SCC mixes with FA, GGBS and SF. Furthermore, quaternary RA-SCC mixes emit lowest environmental burdens without compromising mechanical properties. Thus, using the combination of FA, GGBS and SF as cement substitution to manufacture RA-SCC significantly improves the sustainability of SCC by minimizing the depletion of cement and non-renewable natural resources.

Evaluation of Chloride Absorption in GGBS Concrete by Impedance Measurements (임피던스 측정을 통한 GGBS 콘크리트의 염화물 흡수 평가)

  • Kim, Jaehwan;Cho, Han-Min;You, Young-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.230-237
    • /
    • 2022
  • It is essential that service life of reinforced concrete structures in economic and safety aspects should be secured. It is well-known that chloride attack is a typical deterioration mechanism in field concrete structures. To prevent serious accidents like collapse, many studies have been conducted to increase resistance of chloride ingress using concrete mixed with GGBS. The usage of GGBS concrete is nowadays mandatory. Since most concretes in the field are unsaturated, study regarding chloride absorption is necessary, but many studies have focused on the chloride diffusion phenomenon. Methods for evaluating chloride absorption are cost and improper in the field. It is necessary to develop a simple method for evaluating chloride absorption in practice. This study evaluated resistance of chloride ingress in GGBS concretes with impedance measurement and absorption test. From the results, it was confirmed that the contents of absorbed chloride were linearly correlated with the measured electrical resistivities (or conductivities) in the concrete. At the end of the test, the electrical conductivities were 250.8 S/m (w/b=0.4) and 303.1 S/m (w/b=0.6) for PC concretes, and 2.6 S/m (w/b=0.4) and 64.4 S/m (w/b=0.6) for GGBS concretes, respectively. Considering influencing factors for chloride absorption and impedance measurement, chloride ingress into concrete is mainly affected by pore structures due to replacement of GGBS. Especially, formations of pore structure are different with binder, thereby binders should be considered in building reinforced concrete structures exposed to chloride environments.

An experimental investigation on the mechanical properties of steel fiber reinforced geopolymer concrete

  • Murali, Kallempudi;Meena, T.
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.499-505
    • /
    • 2021
  • Geopolymer binders fascinate the attention of researchers as a replacement to cement binder in conventional concrete. One-ton production of cement releases one ton of carbon-dioxide in the atmosphere. In the replacement of cement by geopolymer material, there are two advantages: one is the reduction of CO2 in the atmosphere, second is the utilization of Fly ash and Ground granulated blast furnace slag (GGBFS) are by-products from coal and steel industries. This paper focuses on the mechanical properties of steel fiber reinforced geopolymer concrete. The framework considered in this research work is geopolymer source (Fly ash, GGBFS and crimped steel fibre) and alkaline activator which consists of NaOH and Na2SiO3 of molarity 8M. Here the Na2SiO3 / NaOH ratio was taken as 2.5. The variables considered in this experimental work include Binder content (360,420 and 450 kg/m3), the proportion of Fly ash and GGBS (70-30, 60-40 and 50-50) for three different grades of Geopolymer concrete (GPC) GPC 20, GPC 40 and GPC 60. The percentage of crimped steel fibres was varied as 0.1%, 0.2%, 0.3%, 0.4% and 0.5%. Generally, the inclusion of steel fibres increases the flexural and split tensile strength of Geopolymer concrete. The optimum dosage of steel fibres was found to be 0.4% (by volume fraction).

Flowability and mechanical characteristics of self-consolidating steel fiber reinforced ultra-high performance concrete

  • Moon, Jiho;Youm, Kwang Soo;Lee, Jong-Sub;Yun, Tae Sup
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.389-401
    • /
    • 2022
  • This study investigated the flowability and mechanical properties of cost-effective steel fiber reinforced ultra-high performance concrete (UHPC) by using locally available materials for field-cast application. To examine the effect of mixture constituents, five mixtures with different fractions of silica fume, silica powder, ground granulated blast furnace slag (GGBS), silica sand, and crushed natural sand were proportionally prepared. Comprehensive experiments for different mixture designs were conducted to evaluate the fresh- and hardened-state properties of self-consolidating UHPC. The results showed that the proposed UHPC had similar mechanical properties compared with conventional UHPC while the flow retention over time was enhanced so that the field-cast application seemed appropriately cost-effective. The self-consolidating UHPC with high flowability and low viscosity takes less total mixing time than conventional UHPC up to 6.7 times. The X-ray computed tomographic imaging was performed to investigate the steel fiber distribution inside the UHPC by visualizing the spatial distribution of steel fibers well. Finally, the tensile stress-strain curve for the proposed UHPC was proposed for the implementation to the structural analysis and design.

DEVELOPMENT OF SUSTAINABLE CEMENTLESS MORTARS

  • Keun-Hyeok Yang;Seol Lee;Sang-Ho Nam
    • International conference on construction engineering and project management
    • /
    • 2009.05a
    • /
    • pp.1630-1636
    • /
    • 2009
  • Nine alkali-activated (AA) mortars were mixed and cured at water or air-dried conditions to explore the significance and limitation for the application of the combination of Ba and Ca ions as an alkali-activator. Ground granulated blast-furnace slag (GGBS) was used for source materials, and calcium hydroxide (Ca(OH)2) and barium hydroxide (Ba(OH)2) were employed as alkali activators. Test results clearly showed that the water curing condition was more effective than the air-dried curing condition for the formation of the denser calcium silicate hydrate (C-S-H) gels that had a higher molar Si/Ca ratio, resulting in a higher strength development. At the same time, the introduction of Ba(OH)2 led to the formation of 2CaO·Al2O3·SiO2·8H2O (C2ASH8) hydrates with higher molar Si/Al and Ca/Al ratios. Based on the test results, it can be concluded that the developed cementless mortars have highly effective performance and high potential as an eco-friendly sustainable building material.

  • PDF

Basic Research of Self Compacting Concrete Using Alkali-Activated Slag Binder (알칼리 활성 슬래그 결합재를 이용한 자기충전 콘크리트의 기초 연구)

  • Song, Keum-Il;Shin, Gyeong-Sik;Gong, Min-Ho;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.6
    • /
    • pp.657-665
    • /
    • 2013
  • The purpose of this study is the basic research of self-compacting concrete using Alkali-Activated Slag (AAS) binder in order to emphasize the durability of structures and facilitate casting the fresh concrete in field. The AAS binder emitted low carbon dioxide ($CO_2$) is eco friendly material of new concept because AAS products not only emit little $CO_2$ during production but also reuse the industrial by-products such as ground granulated blast-furnace slag (GGBS) of the steel mill. Until now, almost of domestic and foreign research are using Ordinary Portland Cement (OPC) for self-compacting concrete, and also, nonexistent research about AAS. The self-compacting concrete must get the performance of flowability, segregation resistance, filling and passing ability. Nine concrete mixes were prepared with the main parameter of unit amount of binder (400, 500, 600 $kg/m^3$) and 3 types of water-binder (W/B) ratio. The results of test were that fresh concretes were satisfied with flowability, segregation resistance, and filling ability of JSCE. But the passing ability was not meet the criteria of EFNARC because of higher viscosity of AAS paste than OPC. This high viscosity of AAS paste enables the manufacturing of self compacting concrete, segregation of which does not occur without the using of viscosity agent. It is necessary that the development of high fluidity AAS binders of higher strength and the study of better passing ability of AAS concrete mixes in order to use self compacting AAS concrete in field.

Enhancement of the Strength of MgO-Based Binder by Accelerated Carbonation (촉진탄산염화에 의한 마그네슘계 고화제의 강도 향상 특성)

  • Yun, Do Youn;Ahn, Jun-Young;Kim, Cheolyong;Kim, Tae Yoo;Hwang, Inseong
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.135-145
    • /
    • 2016
  • MgO recently has been regarded as the alternative material for replacement of cement. The aim of this study is to investigate the effects of accelerated carbonation on the strength development of MgO-based binder which is binary mixtures of magnesium oxide (MgO) with portland cement (PC) or ground granulated blast furnace slag (GGBS) or fly ash (FA). The compressive strengths of all binders were higher in the 20% $CO_2$ condition and for longer curing time. The strength were generally higher as the following order: MgO/PC > MgO/GGBS > MgO/FA system. The binder composed of 20% MgO and 80% PC showed highest compressive strength (38.0MPa) which was higher than PC. The correlation analysis of the porosity and compressive strength showed that compressive strength was higher when porosity was lower. The hydration and carbonation products of MgO including brucite ($Ca(OH)_2$), magnesite ($MgCO_3$) and nesquehonite ($MgCO_3{\cdot}3H_2O$) presumably filled the pores and contributed to strength development. Thermogravimetric analyses elucidated that 0.34 kg of $CO_2$ could be stored the 50% MgO/50% PC binder which performed the maximum $CO_2$ uptake at 20% $CO_2$ condition.