• Title/Summary/Keyword: ground cover

Search Result 506, Processing Time 0.029 seconds

Effects of Organic Apple Production Systems on Foliar Macronutrient Concentrations

  • Choi, H.S.;Rom, C.;Lee, Y.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.165-168
    • /
    • 2011
  • An organic apple (Malus ${\times}$ domestics Borkh.) orchard was established to study the interaction effects of ground cover management systems (GMS) and nutrient sources (NS) on soil and tree nutrient status and tree growth. Trees received one of four GMS: 1) green compost (GC), 2) wood chips (WC), 3) shredded paper (SP), and 4) mow-and-blow (MB). Across all GMS, one of three NS was applied: A) a commercial organic fertilizer (CF), B) poultry litter (PL), and C) control (NF). Overall, GMS had greater effects on the variables than did NS. GC mulch supplied greater nutrients, followed by WC, SP, and MB mulches. SP trees had lower foliar [N] in the first two years than the GC and WC trees. GC-and WC-treated trees had larger trunk cross sectional area than the SP and MB trees.

Seismic response of concrete gravity dam-ice covered reservoir-foundation interaction systems

  • Haciefendioglu, K.;Bayraktar, A.;Turker, T.
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.499-511
    • /
    • 2010
  • This paper examines the ice cover effects on the seismic response of concrete gravity dam-reservoir-foundation interaction systems subjected to a horizontal earthquake ground motion. ANSYS program is used for finite element modeling and analyzing the ice-dam-reservoir-foundation interaction system. The ice-dam-reservoir interaction system is considered by using the Lagrangian (displacementbased) fluid and solid-quadrilateral-isoparametric finite elements. The Sariyar concrete gravity dam in Turkey is selected as a numerical application. The east-west component of Erzincan earthquake, which occurred on 13 March 1992 in Erzincan, Turkey, is selected for the earthquake analysis of the dam. Dynamic analyses of the dam-reservoir-foundation interaction system are performed with and without ice cover separately. Parametric studies are done to show the effects of the variation of the length, thickness, elasticity modulus and density of the ice-cover on the seismic response of the dam. It is observed that the variations of the length, thickness, and elasticity modulus of the ice-cover influence the displacements and stresses of the coupled system considerably. Also, the variation of the density of the ice-cover cannot produce important effects on the seismic response of the dam.

Experimental study on the behavior of the adjacent ground due to the sidewall failure in a shallow tunnel (얕은터널에서 측벽파괴시 주변지반 거동에 대한 실험적 연구)

  • Park, Chan Hyuk;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.871-885
    • /
    • 2017
  • Nowadays, the construction of tunnels with a shallow depth drastically in urban areas increases. But the effect of sidewall displacement in shallow tunnel on its behavior is not well known yet. Most studies on the shallow tunnel have been limited to the stability and the failure of the tunnel and the adjacent ground in plane strain state. Therefore, the model tests were conducted in a model ground which was built with carbon rods, in order to investigate the impact of the tunnel sidewall displacement on the lateral load transfer to the adjacent ground. The lateral displacement of the tunnel sidewall and the load transfered to the adjacent ground were measured in model tests for various overburdens (0.50D, 0.75D, 1.00D, 1.25D). As results, if the cover depth of tunnel was over a constant depth (0.75D) in a shallow tunnel, the tunnel sidewall was failed with a constant shape not depending on the tunnel cover depth and also not affected by the opposite side of the wall. But, if the cover depth of tunnel was under a constant depth (0.75D), the failure of the tunnel sidewall could affect the opposite sidewall. In addition, if the displacement of tunnel sidewall with 50% of the critical displacement occurred, the tunnel failure was found to be at least 75%. However, additional studies are deemed necessary, since they may differ depending on the ground conditions.

Growth and Ground Coverage of Ophiopogon japonicus 'Nanus' under Different Shade Conditions (차광처리에 따른 애기소엽맥문동의 생장과 피복에 관한 연구)

  • Kang, Ae-Ran;Park, Seok-Gon
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.2
    • /
    • pp.68-75
    • /
    • 2017
  • Demand for dwarf mondo grass (DMG; Ophiopogon japonicus 'Nanus') as an ornamental garden plant is expected to grow in the future. The purpose of this study was to investigate the levels of shade tolerance and ground cover by growing DMG under a variety of shade conditions for 18 months (May 2015~October 2016). DMG plants grown in bare ground for 3 years in Jangheung-gun, Jeonnam were used for testing. In an experimental site created in Naju city in Jeonnam, the DMG was planted in planters ($70cm{\times}70cm{\times}24cm$) and covered with a shading curtain to block natural light. Shaded conditions were then arranged under different levels of shade (0%, 55% and 75%). When the plants were grown, growth (leaf size, the number of leaves, fresh weight and dry weight) and ground coverage of DMG were analyzed. According to the results, DMG growth in terms of leaf size and the number of leaves was statistically higher under zero shade (full sunlight), when compared to other shaded conditions. DMG's fresh and dry weights were significantly greater under 0% and 55% shade, compared to those under 75% shade. The degrees of shade tolerance required for normal growth of DMG were found in the range of 0~50%, meaning that more than 50% shade may decrease plant growth. There were no statistical differences in ground coverage rates of DMG under different levels of shade. When 220 tillers were planted per $1m^2$ of plot, up to 80% of the area was covered by DMG after 18 months. Since DMG requires nutrient-rich soil to grow, sufficient nitrogen fertilizers are proposed to accelerate the ground cover of DMG. As DMG remained alive over the winter in the experiments, this study also suggests that DMG can be planted in the southern temperate region.

A Fundamental Study on the Nutrient Solution Cooling System Utilizing Ground Water (지하수를 이용한 양액냉각시스템 개발에 관한 기초연구)

  • 남상운;손정익;김문기
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1993
  • Experimental and theoretical analyses were carried out to investigate the heat exchange characteristics of the nutrient solution cooling system utilizing ground water. The material of heat exchanger used in the experiment was polyethylene and the cross-flow type was adapted in which nutrient solution was mixed and ground water unmixed. For the exchanger surface area of 0.33$m^2$ and flow rates of ground water of 1-6$\ell$/min, NTU(number of transfer units) and effectiveness of experimental heat exchanger were 0.1-0.45 and 10-35%, respectively. Therefore these results showed that the hydroponic greenhouse of 1,000$m^2$(300 pyong) with the ground water of 10$m^2$/day could cover about 55-70% of maximum cooling load in summer.

  • PDF

A Growth Responses of Indoor Ground Cover Plants according to a Light Source of Aritificial Light (인공광의 광원에 따른 실내 지피식물의 생육반응)

  • 방광자;박혜경;최경옥
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.27 no.5
    • /
    • pp.114-119
    • /
    • 2000
  • This study was carried out to obtain fundamental information of growth response of ground cover plants under artificial light quality at indoor. Aglaonema 'Silver Queen', Hedera helix L., Hoya carnosa 'Tricolor' and Saintpaulia ionantha 'Frances' were examined under a 400lux light intensity consisted of Mercury lamp, True-lite lamp, incandescent lamp, dark-room and sunlight indoor condition. A data analysis were performed by GLM, Duncan's multiple range test and mean score with SAS program. Results of experiments are as follows; 1. A plant growth status was better showed under the True-lite lamp than sunlight. 2. A Saintpaulia ionantha flower color was responded in the first place, the deep pinkish red color of Saintpaulia ionantha flower was obtained under Mercury lamp and "True-lite lamp", "sunlight", and incandescent lamp were follow. Flower numbers of Saintpaulia ionantha after 60 days tended to decrease under every artificial light quality. 3. Leaf length and leaf width were increased under True-lite lamp, but most of plants was not significantly affected by artificial light quality. 4. A stem length of Hedera helix was increased the highest rank under sunlight also, one of artificial light, the highest increase rank was showed under incandescent lamp. 5. Chlorophyll content was highly increased under Mercury lamp, but was responded poor under incandescent lamp.

  • PDF

The Change in Fuel Moisture Contents on the Forest Floor after Rainfall

  • Songhee Han;Heemun Chae
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.4
    • /
    • pp.235-245
    • /
    • 2023
  • Forest fuel moisture content is a crucial factor influencing the combustion rate and fuel consumption during forest fires, significantly impacting the occurrence and spread of wildfires. In this study, meteorological data were gathered using a meteorological measuring device (HOBO data logger) installed in the south and north slopes of Kangwon National University Forest, as well as on bare land outside the forest, from November 1, 2021, to October 31, 2022. The objective was to analyze the relationship between meteorological data and fuel moisture content. Fuel moisture content from the ground cover on the south and north slopes was collected. Fallen leaves on the ground were utilized, with a focus on broad-leaved trees (Prunus serrulata, Quercus dentata, Quercus mongolica, and Castanea crenata) and coniferous trees (Pinus densiflora and Pinus koraiensis), categorized by species. Additionally, correlation analysis with fuel moisture content was conducted using temperature (average, maximum, and minimum), humidity (average, minimum), illuminance (average, maximum, and minimum), and wind speed (average, maximum, and minimum) data collected by meteorological measuring devices in the study area. The results indicated a significant correlation between meteorological factors such as temperature, humidity, illuminance, and wind speed, and the moisture content of fuels. Notably, exceptions were observed for the moisture content of the on the north slope and that of the ground cover of Prunus serrulata and Castanea crenata.

An investigation on the ground collapse mechanism induced by cracks in a non-pressurized buried pipe through model tests (모형시험을 통한 비압력 지중관거 균열로 인한 지반함몰 메커니즘 연구)

  • Kim, Yong-Key;Nam, Kyu-Tae;Kim, Ho-Jong;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.2
    • /
    • pp.235-253
    • /
    • 2018
  • Groundwater flow induced by cracks in a buried pipe causes ground loss in the vicinity of it which can lead to underground cavities and sinkhole problems. In this study, the ground collapse mechanism and the failure mode based on an aperture in the pipe located in cohesionless ground were investigated through a series of physical model studies. As the influence parameters, size of the crack, flow velocity in the pipe, groundwater level, ground cover depth and ground composition were adopted in order to examine how each of the parameters affected the behavior of the ground collapse. Influence of every experimental condition was evaluated by the final shape of ground failure (failure mode) and the amount of ground loss. According to the results, the failure mode appeared to be a 'Y' shape which featured a discontinuous change of the angle of erosion when a groundwater level was equal to the height of the ground depth. While in the case of a water table getting higher than the level of ground cover depth, the shape of the failure mode turned to be a 'V' shape that had a constant erosion angle. As the height of the ground depth increased, it was revealed that a mechanism where a vertically collapsed area which consisted of a width proportional to the ground height and a constant length occurred was repeated.