• Title/Summary/Keyword: ground bamboo fibers

Search Result 2, Processing Time 0.243 seconds

Effect of Bamboo Fiber Grinding on the Mechanical, Thermal, Impact, and Water Absorption Properties of Bamboo/Poly(lactic acid) Biocomposites (대나무/폴리락틱산 바이오복합재료의 기계적, 열적, 충격 및 수분흡수 특성에 미치는 대나무섬유 분쇄의 영향)

  • Cho, Yong Bum;Cho, Donghwan
    • Journal of Adhesion and Interface
    • /
    • v.13 no.3
    • /
    • pp.121-130
    • /
    • 2012
  • In the present study, bamboo/PLA biocomposites through injection molding process using extruded bamboo/PLA pellets with the fiber contents of 30, 40, and 50 wt% according to the presence and absence of bamboo fiber grinding, respectively, were fabricated and their mechanical, thermal, impact, and water absorption properties were explored. Compared to neat PLA, the flexural modulus, tensile modulus, storage modulus and impact strength of bamboo/PLA biocomposites were considerably increased. In particular, the moduli were further increased by introducing the ground bamboo fibers. In addition, use of the ground bamboo fibers was effective to enhance the long-term water resistance of the biocomposites. The heat treatment temperature of neat PLA was improved by 16% by incorporating the bamboo fibers and the fiber grinding effect was slight. The incorporation of the ground bamboo fibers to PLA did not influence the tensile strength and impact toughness of bamboo/PLA biocomposites.

Effect of Vascular Bundles and Fiber Sheaths in Nodes and Internodes of Gigantochloa apus Bamboo Strips on Tensile Strength

  • Atmawi DARWIS;Anne HADIYANE;Endah SULISTYAWATI;Ihak SUMARDI
    • Journal of the Korean Wood Science and Technology
    • /
    • v.51 no.4
    • /
    • pp.309-319
    • /
    • 2023
  • Bamboo culm is in the form of a tube/pipe, composed of internodes which are bounded by a partition/diaphragm (node). Anatomically, bamboo is composed of vascular bundles and parenchyma ground tissue. One of the constituents of vascular bundles is fibers that are grouped to form a fiber sheath. The anatomical structure of the nodes and internodes is thought to influence the strength of bamboo strips, including tensile strength. This study aimed to determine the characteristics of vascular bundles (distribution and fiber percentage) and their effects on the density and tensile strength of Gigantochloa apus bamboo strips with and without nodes. The bamboo culms were divided into three parts (outer, middle, and inner) along the radial direction. The results showed that the distribution of vascular bundles and percentage of fiber sheaths decreased significantly from the outer to the inner layer. This also had a significantly decreased density and tensile strength. Furthermore, the number of vascular bundles (in the transverse plane) was greater in the internodes than in the nodes. Anatomically, the orientation of the vascular bundles at irregular nodes is observed in the radial and tangential planes, where the direction is not only in the axial direction, but also in the radial and tangential directions. This caused the tensile strength of the G. apus bamboo strips to be lower at the nodes than at the internodes.