• Title/Summary/Keyword: grooving

Search Result 168, Processing Time 0.027 seconds

Micro Ultrasonic Elliptical Vibration Cutting (II) Ultrasonic Micro V-grooving Using Elliptical Vibration Cutting (미세 초음파 타원궤적 진동절삭 (II) 타원진동 절삭운동을 이용한 미세 홈 초음파 가공)

  • Kim Gi Dae;Loh Byoung-Gook;Hwang Kyung-Sig
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.198-204
    • /
    • 2005
  • For precise micro V-grooving, ultrasonic elliptical vibration cutting (UEVC) is proposed using two parallel piezoelectric actuators, which are energized by sinusoidal voltages with a phase difference of 90 degrees. Experimental setup is composed of stacked PZT actuators, a single crystal diamond cutting tool, and a precision motorized xyz stage. It is found that the chip formed in the process of UEVC is discontinuous because of the periodic contacts and non-contacts occurring between the tool and workpiece. It is experimentally observed that the cutting force in the process of UEVC significantly reduces compared to the ordinary non-vibration cutting. In addition, the creation of burr during UEVC is significantly suppressed, which is attributable to the decrease in the specific cutting energy.

Micro-groove Cutting Experiments using Micro-Machining System (미세가공 시스템을 이용한 미세 그루브 가공실험)

  • 이선우;이동주;이응숙;제태진
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.263-268
    • /
    • 2001
  • The needs for precision machining of micro to milli parts have been increased as the industry require high quality products, especially for the micro-machining of IT products. The ultra-precision machining system is essential for the micro machining of fine structures, which insures machining accuracy, low systematic and random error and repeatability. In this study, we developed micro machining system, which is equipped with air bearing stage for ultra precision machining and also we present the results of V-grooving experiments, conducted by the developed system, to verify the performance of system. The results show that the machined V-grooving had good accuracy with repeatable stability.

  • PDF

Effect of the Number of Nozzle Scanning in Micro-Line Grooving of Glass by Powder Blasting (Powder Blasting을 이용한 유리의 미세 선형 홈 가공시 노즐 주사 횟수의 영향)

  • 박경호;김광현;최종순;박동삼
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.294-299
    • /
    • 2001
  • The old technique of sandblasting which has been used for decoration of glass surface has recently been developed into a powder blasting technique for various materials, capable of producing micro structures larger than 100 m. This paper describes the performance of powder blasting technique in micro-line grooving of glass and the effect of the number of nozzle scanning on the depth and width of line groove. Experimental results showed that increasing the no. of nozzle scanning resulted in the increase of depth and width in grooves. Increase of width which may cause several problems in the precision machining results from wear of mask film.

  • PDF

Side Burr Generation Model of Micro-Grooving (미세홈 가공에 있어서 측면버 발생모델)

  • 임한석;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.987-992
    • /
    • 1997
  • Burrs always come out with the machining of ducterial with small size. Though the size of burrs is small, burrs dominate deterioration of the accuracy of the micro grooves. So the burr generation model especially side burr generation model was investigated to predict the size of the burrs at the given cutting conditions. The side shear plane is introduced to build the burr generation model and the width of side shear plane nomalized with cutting depth is defined with the shear angle. From the theoretical observation, the width of side shear plane can vary up 40% of the cutting depth. To determine the size of burr and stiffness, single groovings were carried out and it was found that there exist a critical depth of cut that the size or stiffness of the burr vary.

  • PDF

Minimization of Pattern Size on Polycarbonate Material in V-grooving (PC 폴리머 재료의 미세 V-홈 절삭가공 시 패턴 크기 최소화)

  • Kim, Gi-Dae
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.5
    • /
    • pp.523-527
    • /
    • 2011
  • Polycarbonate (PC) polymer is an engineering plastic which has large tensile strength and impact resistance and is wildly used as functional parts like micro mold. Direct machining of PC materials produces lots of burrs and rough surface due to large ductility and weak heat resistance and hence it is very difficult to machine PC materials using cutting tool to make micro-parts. In this study, elliptical vibration cutting (EVC) or 2-dimensional vibration cutting was performed to minimize the size of micro V-grooves on PC material. From the experimental results, it was observed that as the cutting depth and pattern size become smaller, the better machining quality was obtained, which is attributed to the positive effect of EVC that is dependent on the ratio of vibration amplitude to cutting depth. As the height of V-groove becomes less than $1.8{\mu}m$, however, the machining quality becomes lower as the pattern size decreases.

Structural Dynamics Modification Using Surface Grooving Technique (임의의 형태를 갖는 흠을 이용한 표면형상변형을 통한 동특성 변경)

  • 박미유;박영진;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.859-863
    • /
    • 2004
  • Structural Dynamics Modification is very effective technique to improve structure's dynamic characteristics by adding or removing auxiliary structures, changing material property, changing shape of structure. In this research, using the surface grooving technique, shape of base structure was changed to improve its first natural frequency. Utilizing the result of sensitivity analysis, groove shape was formed gathering the many small embossing elements. For this process, Sensitivity Criterion Factor was introduced. To reduce its amount of calculation, the range of target area was restricted to their neighboring area and that result was very successful.

  • PDF

Acoustic omission signals according to the machining conditions of micro-grooving on mold steel (금형강에 미세 그루브 가공시 가공조건에 따른 음향 방출 신호 분석)

  • 곽철훈;김남훈;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.266-269
    • /
    • 2002
  • Research during the past several years has established the effectiveness of acoustic emission (AE)-based sensing methodologies for machine condition analysis and process. AE has been proposed and evaluated for a variety of sensing tasks as well as for use as a technique for quantitative studies of manufacturing process. STD11 has been known as difficult-to-cut materials. For this study, the micro-grooving machine was developed. The experiments were performed using diamond blade and CBN blade f3r machining STD11. Evaluating the machining conditions, frequency spectrum analysis of acoustic emission (AE) signals according to each conditions were applied.

  • PDF

Development of Ultra-precision Ultrasonic Surface Machining Device Using Cyclic Elliptical Cutting Motion of a Couple of Piezoelectric Material (압전소자의 미세회전운동을 이용한 초정밀 초음파 표면가공기 개발)

  • Kim, Gi-Dae;Loh, Byung-Gook;Kim, Jeong-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.29-35
    • /
    • 2006
  • Various types of elliptical motions are generated by PZT mechanism which is composed of two parallel piezoelectric actuators. Elliptical vibration cutting(EVC) is obtained by attaching single crystal diamond cutting tool to the mechanism, and V-grooving for Brass and Aluminum is carried out by applying the EVC. It is experimentally observed that the cutting force in the process of the EVC reduces compared to the ordinary non-vibration cutting, which is due to the decrease of undeformed chip thickness and frictional force between the tool and chip. Ultrasonic elliptical vibration cutting(UEVC) suppresses burr formation and decreases cutting force still more, so UEVC makes it possible to enhance the shape accuracy of machined surface.

  • PDF