• 제목/요약/키워드: grooved housing

검색결과 2건 처리시간 0.018초

Microstrip Directional Coupler Design with High Performance Using Optimization based on Evolution Strategy

  • Joung, Myoung-Sub;Park, Jun-Seok;Kim, Hyeong-Seok;Lim, Jae-Bong;Cho, Hong-Goo
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권6호
    • /
    • pp.276-281
    • /
    • 2004
  • In this paper, the optimal design of a novel microstrip directional coupler with a grooved housing for high directivity characteristic is presented. It will be shown that the high directivity of the microstrip coupler can be achieved simply by attaching an optimized housing structure. over the microstrip, which is much easier to fabricate than other conventional types. The dimensions of the proposed structure are maximized by using (1+1) evolution strategy (ES) combined with the deterministic algorithm. To improve the effectiveness of the results, efficient optimization procedures suitable for the model are proposed. From these results, it is determined that the proposed structure indicates an improved directivity. The optimized results are verified by full wave analysis at the center frequency of 850MHz.

도브테일 그루브에 장착된 O-링시일의 접촉응력에 관한 연구 (Contact Stress Analysis of an O-ring Seal in a Dovetail Groove)

  • 김청균;황준태
    • Tribology and Lubricants
    • /
    • 제16권2호
    • /
    • pp.138-143
    • /
    • 2000
  • The sealing performance of an elastomeric O-ring seal with a temperature gradient has been analyzed for the contact stress behaviors that develop between the O-ring seal and the housing surfaces with which it comes into contact in the dovetail groove. The leakage of an O-ring seal will occur when the pressure differential across the seal just exceeds the initial peak contact stress. The contact stress behaviors that develop in compressed O-rings, in common case of restrained geometry (grooved), are investigated using the finite element method. The FE analysis includes material hyperelasticity and axisymmetry The computed FEM results show that the contact stress behaviors are related to a compression rate and a temperature gradient between the vacuum chamber with a dovetail groove and the contacting plate with a cooling jacket.