• Title/Summary/Keyword: grinding particle

Search Result 191, Processing Time 0.031 seconds

Fabrication and Evaluation of Machinability of Diamond Particle Electroplating Tool for Cover-Glass Edge Machining (커버 글래스 엣지 가공을 위한 다이아몬드 입자 전착 공구 제작 및 가공성 평가)

  • Kim, Byung-Chan;Yoon, Ho-Sub;Cho, Myeong-Woo
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • In these days, due to generalization of using smart mobile phone and wearable device such as smart watch, demand of Cover-glass and touch screen panel for protecting display increases. With increasing the demand of Cover-glass, slimming technique is promising for weight lightening, zero bezel. Cover-glass produced by this technique is required to decreasing thickness with increase strength. In the Cover-glass manufacturing process, mechanical processing and chemical processing has improve in the strength. Generally, Diamond electrodeposition wheel is used in mechanical process. Reinforced glass with the characteristics of the brittle and high hardness was manufactured by using a diamond electrodeposition wheel. At this time, Because of surface of the tool present non-uniform distribution of diamond particle, it has generate Loading of wheel and it has been decrease life of grinding tool, efficiency of grinding, quality and shape accuracy of workpiece. Thus Research is needed to controling particle distribution of diamond electrodeposition wheel uniformly. And it is necessary to study micro hole machining such as proximity senser hole, speaker hole positioned Cover-glass. Reinforced glass with the characteristics of the brittle and high hardness is difficult to machining. Processing of reinforced glass have generated wear of tool, micro cracks. Also, it is decreasing shape accuracy. In this paper, We conducted a study on how to control particle distribution uniformly about the diamond tool manufactured using elecetodeposition processing. It analyzed the factors that affect the arrangement of the particles in the electrodeposition process by design of experiment. And There is produced the grinding tool, which derives an optimum deposition conditions, for processing Cover-glass edge and the machinability was evaluated.

Development of a Pretreatment Process for Coal Gasification Slag to Convert High-quality Aggregates. (고품질 골재 전환을 위한 석탄 가스화 용융슬래그의 전처리 공정 개발)

  • Hu, Yun-Yao;Han, Soo-Hwan;Lim, Gun-Su;Han, Jun-Hui;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.122-123
    • /
    • 2021
  • This study examines the performance of pretreatment process system as the initial construction stage of the pretreatment process system to use CGS, a by-product generated in IGCC, as a concrete fine aggregate of construction materials. The process undergoes a grinding process capable of grinding to a predetermined particle size during primary grinding and a sorting plant through sieve grading of 2.5 mm or less for particle size correction. Afterwards, it is hoped that the use of coal gasification slag of Korean IGCC as a fine aggregate for concrete will be distributed and expanded by producing quality-improved CGS fine aggregate using water as a medium for removing impurities and particulates.

  • PDF

Hepatoprotective Effects of Amorphous and Nnno-Particle Pyeparations of Ursodeoxycholic Acid in CC4-Induced Mice : Effects of Three Types of Fine Grinding Mills (Ursodeoxycholic acid의 무정형 초미립자제제들의 CC4 유도 간손상 생쥐에 대한 보호 효과)

  • 정한영;곽신성;김현일;최우식;이지현;김애라;박태현;정해영;김유정
    • Biomolecules & Therapeutics
    • /
    • v.10 no.1
    • /
    • pp.1-6
    • /
    • 2002
  • The particle size of medicinal materials is an Important physical property that affects the phar-maceutical behaviors such as dissolution, chemical stability, and bioavailability of solid dosage forms. The size reduction of raw medicinal powder is needed to formulate insoluble drugs or slightly soluble medicines and to improve the pharmaceutical properties such as the solubility, the pharmaceutical mixing, and the dispersion. The objective of the present study is to evaluate physiological activity of amorphous and nano-particle prep-arations of insoluble drug, ursodeoxycholic acid (UDCA), which were made by three types of fine grinding mills. The change of physical properties of ground UDCA was conformed by Mastersiger microplus and X-ray diffraction. We have investigated hepatoprotective effects of the nano-particle preparations of UDCA by plan-etary mill, vibration rod mill and jet mill in $CCI_4$-induced oxidatively injured mouse liver. The results showed that nano-particle preparations of UDCA all decreased reactive oxygen sepecies generation and lipid peroxi-dation in $CCI_4$-induced oxidative stress mice. Among them, nano-particle preparations by vibration rod mill and jet mill showed more significantly hepatoprotective effects compared to intact UDCA and planetary mill-ground UDCA. These results suggest that ground UDCA with vibration rod mill and jet mill shows a high amorphous state and the improved dissolution.

Grinding Method for Increasing Specific Surface Area of Fluidized Bed Fly Ash

  • Lim, Chang Sung;Lee, Ki Gang
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.2
    • /
    • pp.153-159
    • /
    • 2019
  • In this study, fly ash of a fluidized bed boiler produced in a power plant was stabilized by hydration and carbonation reaction. Then, each raw material was pulverized by two kinds of grinding equipment (Planetary mills and pot mills); the degree of grinding and the agglomeration behavior were observed. It was found that there were changes of specific surface area and particle size distribution according to grinding time. The surface of the raw material was observed using an optical microscope. As a result, agglomerates of about 75 ㎛ or more due to electrostatic phenomenon were formed as the grinding time became longer; it was confirmed that the crushing efficiency slightly increased with use of antistatic agent.

The Influence of Grinding Time & Binder on the Particle Size Distribution of the Pearl Pigments (펄 안료의 입도분포에 미치는 분쇄시간 및 바인더의 영향)

  • So Tae-Sup;Go Du-Jin;Ro Hee-Su;Kim Sang-Bum;Kim Tae-Won;Kim Joong-Hoi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.30 no.4 s.48
    • /
    • pp.543-548
    • /
    • 2004
  • For pearl pigments used for splendor or gloss effect of make-up products, especiallv point make-up products like eye-shadow and blusher, we studied the variation of particle size distribution by the grinding time and by the binder used as a binding agent. In this study. high speed mixer was used and the particle sire distribution was measured by using the light scattering method. In case of pearl pigments, its median diameter of $5{\;}{\mu}m$, the particle size was reduced to 4.6 um when it was ground for 120 s. When it was applied for the pearl pigment of $45{\;}{\mu}m$, the particle size was reduced to $27{\;}{\mu}m$. We confirmed that the latter was reduced more largely and the original gloss was reduced too. For the binder, we studied the correlation between particle size of raw material and grinding time. We also investigated the effects of the binder contents on the variation of particle size distribution of products by aggregation of particles.

Wet Fine Grinding of Rice Husk Ash using a Stirred Ball Mill (교반 볼밀을 이용한 왕겨재의 습식 미세분쇄에 관한 연구)

  • Park, S.J.;Kim, M.H.;Choi, Y.K.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.1 s.114
    • /
    • pp.33-38
    • /
    • 2006
  • This work was conducted to find the operating characteristics of an efficient wet grinding system designed to obtain fine rice husk ash powder. Once the rice husk was combusted and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement. Grinding time (15, 30, 45 min), impeller speed (250, 500, 750 rpm), and mixed ratio (6.7, 8.4, 11.l, 20.9) were three operating factors examined for the performance of a wet-type stirred ball mill grinding system. For the operating conditions employed, mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of $2.83{\sim}9.58{\mu}m,\;0.5{\sim}6.73kWh/kg,\;and\;0.51{\sim}3.27m^2/Wh$, respectively. With the wet-type stirred ball mill grinding system used in this study, the grinding energy efficiency decreased with the increase in total grinding time, impeller speed, and mixed ratio. The difference in specific surface area of powder linearly increased with logarithm in total number of impeller revolution and the grinding energy efficiency linearly decreased. Grinding time of 45 min, impeller speed of 500 rpm, and mixed ratio of 6.7 were chosen as the best operating condition. At this condition, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughput, and specific energy input were $2.84{\mu}m,\;2.28m^2/Wh,\;0.17kg/h$, and 2.03kWh/kg, respectively. Wet fine grinding which generates no fly dust causing pollution and makes continuous operation easy, is appeared to be a promising solution to the automatization of rice husk ash grinding process.

Dry Fine Grinding of Rice Husk Ash using a Stirred Ball Mill (교반 볼밀을 이용한 왕겨재의 건식 미세분쇄에 관한 연구)

  • 박승제;최연규;김명호;이종호
    • Journal of Biosystems Engineering
    • /
    • v.25 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • This work was conducted to study the operating characteristics of a grinding system designed to obtain fine rice husk ash powder. To find better utilizing of rice husk, a valuable by-product from rice production, once the rice husk was incinerated and the thermal energy was recovered from the furnace, the ash was fed and pulverized in the grinding system resulting a fine powder to be used as a supplementary adding material to the portland cement manufacturing . The rice husk ash grinding system consisted of a high speed centrifugal fan for the preliminary coarse milling and a dry-type stirred ball mill for the subsequent fine grinding . Total grinding time 9 5, 15, 30, 45 min), impeller speed (250, 500, 750 rpm) , and mixed ratio (4.8, 7.9, 14.9) were three operating factors examined for the performance of a stirred ball mill used for the fine grinding of ash. With the stirred ball mill used in this study, the minimum attianable mean diameter of rice husk ash powder appeared to be 2 ${\mu}{\textrm}{m}$. During the find grinding, the difference in specific surface area of powder showed an increase and the grinding energy efficiency decreased with the increase in total grinding time, impeller speed ,and mixed ratio. For the operating conditions employed , the resulting mean diameter of fine ash powder, specific energy input, and grinding energy efficiency were in the range of 1.79 --16.04${\mu}{\textrm}{m}$, 0.072-5.226kWh/kg, an d1.11-12.15$m^2$/Wh, respectively. Grinding time of 30 min , impeller speed of 750 rpm, and mixed ratio of 4.8 were chosen as the best operating conditions of the stirred ball mill for fine grinding . At these conditions, mean particle diameter of the fine ash, grinding energy efficiency, grinding throughtput, and specific energy input were 2.73${\mu}{\textrm}{m}$, 3.95$m^2$/Wh, 0.25kg/h, and 1.22kWh/kg, respectively.

  • PDF

Hydrogen Storage Property Comparison of Pure Mg and Iron (III) Oxide-Added Mg Prepared by Reactive Mechanical Grinding

  • Song, Myoung Youp;Kwon, Sung Nam;Park, Hye Ryoung
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.5
    • /
    • pp.383-387
    • /
    • 2012
  • The activation of Mg-10 wt%$Fe_2O_3$ was completed after one hydriding-dehydriding cycle. Activated Mg-10 wt%$Fe_2O_3$ absorbed 5.54 wt% H for 60 min at 593 K under 12 bar $H_2$, and desorbed 1.04 wt% H for 60 min at 593 K under 1.0 bar $H_2$. The effect of the reactive grinding on the hydriding and dehydriding rates of Mg was weak. The reactive grinding of Mg with $Fe_2O_3$ is believed to increase the $H_2$-sorption rates by facilitating nucleation (by creating defects on the surface of the Mg particles and by the additive), by making cracks on the surface of Mg particles and reducing the particle size of Mg and thus by shortening the diffusion distances of hydrogen atoms. The added $Fe_2O_3$ and the $Fe_2O_3$ pulverized during mechanical grinding are considered to help the particles of magnesium become finer. Hydriding-dehydriding cycling is also considered to increase the $H_2$-sorption rates of Mg by creating defects and cracks and by reducing the particle size of Mg.

An experimental study on the picosecond laser dressing of bronze-bonded diamond wheels

  • Wang, Yanyi;Chen, Genyu;Hu, Bang;Zhou, Wei
    • Advances in nano research
    • /
    • v.12 no.6
    • /
    • pp.583-592
    • /
    • 2022
  • In this paper, a pulsed picosecond laser dressing method for bronze-bonded diamond wheel is studied systematically and comprehensively. The picosecond laser pulse ablation experiment is carried out, and the ablation thresholds of bronze-bonded and diamond abrasive particle are measured respectively. The results indicate that the single-pulse ablation thresholds of bronze-bonded are 0.89J/cm2, 0.24J/cm2 during strong/weak ablation stages. And the multi-pulse ablation thresholds of diamond abrasive particle are 1.69J/cm2, 0.49J/cm2 during strong/weak ablation stages. Obviously, diamond grains have less thermal damage during the process of gentle ablation. The diamond grains of the grinding wheel surface are graphitized during laser dressing. The bronze-bonded is relatively smooth and organizational stability, and the diamond grits have suitable prominent height, which are beneficial to maintain the good grinding performance of dressed bronze-bonded diamond grinding wheels.

A Study on the Environmentally Conscious Machining Technology Cutting Fluid Atomization and Environmental Impact in Grinding Operation (I) (환경 친화적 기계가공 기술에 관한 연구 연삭공정에서의 절삭유 미립화와 환경영향(I))

  • Hwang Joon;Chung Eui-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.61-69
    • /
    • 2005
  • This paper presents the experimental results to analyze the atomization characteristics and environmental impact of cutting fluid in grinding process. Grinding is a major machining process to improve surface quality with different machining mechanism which is compared with turning or milling process. The environmental impact due to aerosol generation via grinding process is a major concern associated with environmental consciousness. Experimental results show that the generated fine aerosol which particle size less than 10 micron appears near working zone under given operational conditions. The aerosol concentration is much higher enough to affect human health risk with its generated aerosol quantities. This study can be provided a basic knowledge fur further research of environmental consciousness machining development.