• Title/Summary/Keyword: grinding method

Search Result 508, Processing Time 0.025 seconds

A study on the analysis of grinding mechanism by using optimum in-process electrolytic dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명에 관한 연구)

  • Lee, Eun-Sang;Kim, Jeong-Du
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1298-1310
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective precision grinding of brittle materials. However, the present dressing system cannot have control of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

Effect of the Elasticity Modulus of Jig Material on Blade Edge Shape in Grinding Process of Sapphire Medical Knife (사파이어 의료용 나이프의 연삭가공에서 지그의 탄성계수가 날 부 형상에 미치는 영향)

  • Shin, Gun-Hwi;Lee, Deug-Woo;Kwak, Tae-Soo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.2
    • /
    • pp.102-107
    • /
    • 2017
  • This study focuses on the effect of the elasticity modulus of jig material on blade edge shape in the grinding process of a sapphire medical knife. The ELID grinding process was applied as the edge-grinding method for sapphire material. Carbon steel and copper have been selected as the hard and soft jig materials, respectively. The blade edge created by ELID grinding was measured by a surface roughness tester and optical microscope. The shape of the ground edge and surface roughness were compared using the measurement results. As a result, it was found that chipping in the blade edge of the sapphire knife occurred more than in the case of jig material with a high-elasticity modulus because of the high normal force in the grinding process. Moreover, the maximum height surface roughness, $R_{max}$,of the ground surface was higher in the case of the jig material with a high-elasticity modulus due to the difference in elasticelongation. It was considered to lead to chipping from the notch effect.

Effect of Heating Treatment of Silica Powder on Stirred Ball Milling Efficiency (규석 분말의 교반형 볼 밀 분쇄효율에 미치는 열처리의 영향)

  • 김병곤;박종력;최상근;이재장
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.696-701
    • /
    • 2003
  • The grinding efficiencies of silica powder in a small scale stirred ball mill were investigated by energy consumption estimate. Comparing with a non-treated silica powder and a heating treated silica powder, it was found that a silica powder cooled in room temperature after heating treatment at 600∼900$^{\circ}C$ consumed lower grinding energy than non-treated silica powder, and a silica powder quenched after heating treatment consumed lower grinding energies about 52∼62%, in case of dry grinding. Additionally, if heating treated silica powder grind in wet method, energy consumption will be decreased about 40% than in dry grinding, and the dependency of the particle size to the grinding efficiency, quenching significantly improved it.

A Study on the Ultraprecision Grinding for Brittle Materials With Electrolytic Dressing (전해드레싱에 의한 경취재료의 초정밀 연삭에 관한 연구)

  • 김정두;이연종;이창열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1486-1496
    • /
    • 1993
  • The diamond wheel with superabrasive is required for mirror-like surface grinding of brittle materials. But the conventional dressing mothod can not apply to the diamond wheel with superabrasive. Recently electrolytic dressing method was developed for cast-iron bonded diamond wheel with superabrasive. This technique can take replace of lapping and polishing. Using the electrolytic dressing, the surface roughness of workpiece was improved largely and grinding force was very low and the continuity of the grinding force was also very improved. In this study, the purpose is the realization of mirror-like surface grinding of ferrite with electrolytic dressing of metal bonded diamond wheel. For application of ultraprecision grinding for brittle material, superabrasive wheel, air spindle and inprocess electrolytic dressing were used. In addition, the effects of pick current and pulse width on ground surface were investigated, and the suitable dressing conditions for ferrite were found out.

Grinding Technology for Surface Texturing (연삭기법을 이용한 패터닝 기술)

  • Ko, Tae Jo;Han, Do Sup;Qiu, Kang;Park, Jong-Kweon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.5
    • /
    • pp.367-373
    • /
    • 2014
  • Surface texturing is a machining process on the surface to give engineering functions. The representative process of the surface texturing is lotus effect to give hydrophobic property by the lithography and chemical etching, which is the bio mimic from the nature. Surface texturing can be manufactured by a lot of processes, in particular using mechanical method such as a precise diamond turning, grinding, rolling, embossing, vibrorolling, and abrasive jet machining (AJM). Among them, the grinding process is notable in terms of the wide range of texturing area and fast processing time. The patterning by grinding is done by the grooved grinding wheel on the work piece. In this case, the pattern shape is determined by the grinding conditions as well as the wheel dressing conditions. In this paper, experimental study on the pattern shapes were done and provide the feasibility in use for the large area patterning.

A Study on the Grinding Characteristics according to Oil Mist Supply Method (오일 미스트 분사 방법에 따른 연삭특성)

  • 허남환;이석우;최헌종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.254-257
    • /
    • 2002
  • As the large Coolant amount used of a machine holds mass serious trouble recently, an environment pollution is increased, and a machine is conquering large specific gravity in an empty cost plane. It is the stage that must reexamine the parts washing that processing is later with this current way or a problem of a liquid waste treatment back. The environmental problems by using coolant demanded the new cooling methods. As one of them, the studies on the grinding with compressed cold air and oil mist have been done. The cooling method using compressed cold air was effective through going down the temperature of compressed air supplied below -$25^{\circ}C$ and increasing the amount of compressed cold air, but had not enough cooling effect due to the low performance of lubrication. Therefore, the cooling methods using oil mist newly were suggested. This method can satisfy both cooling effect and lubrication with only small amount of coolant, also have the benefit in the point of decreasing the environmental pollution. This paper focused on analyzing the grinding characteristics of the cooling method using oil mist. The grinding test according to compressed cold air and oil mist supply direction were done.

  • PDF

A Study on the grinding factor affecting the AE Source in surface grinding (평면연삭에 있어서 AE발생원에 영향을 미치는 연삭인자에 관한 연구)

  • Han, Eung-Kyo;Kim, Ki-Choong;Kim, Koung-Suk;Kwon, Dong-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.3 no.2
    • /
    • pp.55-61
    • /
    • 1986
  • The study is concerned with the investigation of grinding factor affecting the AE Source by means of the relation between the amplitude level of AE signal and the depth of wheel engagement in surface grinding by AE method. As the result, work velocity was confirmed that the amplitude of AE signal had almost constant value in comparison with the depth of wheel engagement. But the depth of wheel engagement and the width of wheel engagement were proportional to the amplitude of AE signal. Therefore, when the AE Source was classified by 3-zone, Ws and Wf were affected by the depth of wheel engagement and that Wr was affected by the width of wheel engagement. Also, the adaptability of the AE method was studied about the detection of tool life of grinding wheel, sparkout and initial contact point.

  • PDF

Effect of Soil Sample Pretreatment Methods on Total Heavy Metal Concentration (토양 시료조제 방법이 총중금속 농도에 미치는 영향)

  • Kim, Jung-Eun;Ji, Won Hyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.4
    • /
    • pp.63-74
    • /
    • 2022
  • In analyzing heavy metals in soil samples, the standard protocol established by Korean Minstry of Environment (KSTM) requires two different pretreatments (A and B) based on soil particle size. Soil particles < 0.15 mm in diameter after sieving are directly processed into acid extraction (method A). However, if the quantity of soil particles < 0.15 mm are not enough, grinding of the particles within 0.15 mm ~ 2 mm is required (method B). Grinding is often needed for some field samples, especially for the soil samples retrieved from soil washing process that contain relatively large-sized soil grains. In this study, two soil samples with different particle size distribution were prepared and analyzed for heavy metals concentrations using two different pretreatment to investigate the effect of grinding. The results showed that heavy metal concentrations tend to increase with the increase of the fraction of small-sized particles. In comparison of the two pretreatments, pretreatment A yielded higher heavy metal concentration than pretreatment B, indicating significant influence of grinding on analytical results. This results suggest that the analytical values of heavy metals in soil samples obtained by KSTM should be taken with caution and carefully reviewed.

A Study on the the Grindig of SUS304 with Optimum In-Process Electrolytic Dressing (최적 연속 전해드레싱을 적용한 SUS304의 연삭에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.25-30
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of astainless steel used in shaft, screw parts and clear value have been improved by using superabrasive wheel and precision grinding machine. The completion of optimum dressing of superabrasive wheel makes possible the effective percision grinding of stainless steel. However, the present dressing system cannot have control of optimum dressing of the superabrabive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of stainless steel(SUS304).

  • PDF

A Study on the Analysis of Grinding Mechanism and Development of Dressig System by using Optimum In-process Electrolytic Dressing (최적 연속 전해드레싱에 의한 연삭기구의 규명 및 시스템 개발에 관한연구)

  • 이은상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.96-101
    • /
    • 1997
  • In recent years, grinding techniques for precision machining of brittle materials used in electric, optical and magnetic parts have been improved by using superabrasive wheel and precision grinding machine. The present dressing system cannot have controll of optimum dressing of the superabrasive wheel. In this study, a new system and the grinding mechanism of optimum in-process electrolytic dressing were proposed. This system can carry out optimum in-process dressing of superabrasive wheel, and give very effective control according to unstable current and gap increase. Therefore, the optimum in-process electrolytic dressing is a good method to obtain the efficiency and mirror-like grinding of brittle materials.

  • PDF