• Title/Summary/Keyword: grid spacer

Search Result 166, Processing Time 0.027 seconds

Dynamic Characteristics of Spacer Grid Impact Loads for SSE (안전정지지진에 대한 Spacer Grid 충격하중의 동특성)

  • Jhung, Myung-Jo;Song, Heuy-Gap;Park, Keun-Bae
    • Nuclear Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.111-120
    • /
    • 1992
  • This paper investigates the dynamic characteristics of spacer grid impact loads and the effects of variations in the amplitude and frequency of the core plate motions on the resultant impact loads. A model of the longest row (15 fuel assemblies) across the core is analyzed using the input motions generated from safe shutdown earthquake. Input excitations consist of time history motions applied to the core support plate, fuel alignment plate and core shroud. The responses are determined for a set of four parameter runs with respect to the amplitude and frequency changes. Spacer grid impact loads and normalized input values for all cases are presented. The results show that changing the natural frequency has negligible effect but changing the amplitude of the input motions has a significant effect on the grid impact loads Therefore, time history analysis is not necessary for a shifted case to get the core responses under the seismic excitation.

  • PDF

Design and Analyses on the Spacer Grid of the PLWR Fuel (가압경수로 핵연료 지지격자의 기계/구조적 설계 및 분석)

  • Song, Kee-Nam
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.746-751
    • /
    • 2001
  • Design requirements for the nuclear fuel assembly grid of the pressurized water reactor are reviewed from the mechanical/structural point of view. And mechanical/structural tests and numerical analyses on the various spacer grid candidates that has been uniquely designed by KAERI are carried out to find out their mechanical/structural performance. As a result, the results from the numerical analyses are good agreements with test results.

  • PDF

Modified mixing coefficient for the crossflow between sub-channels in a 5 × 5 rod bundle geometry

  • Lee, Jungjin;Lee, Jun Ho;Park, Hyungmin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.11
    • /
    • pp.2479-2490
    • /
    • 2020
  • We performed experiments to measure a single-phase upward flow in a 5 × 5 rod bundle with spacer grids using a particle image velocimetry, focusing on the crossflow. The Reynolds number based on the hydraulic diameter and the bulk velocity is 10,000. The ratio of pitch between rods and rod diameter is 1.4 and spacer grid is installed periodically. The turbulence in the rod bundle results from the combination of a forced mixing and natural mixing. The forced mixing by the spacer grid persists up to 10Dh from the spacer grid, while the natural mixing is attributed to the crossflow between adjacent subchannels. The combined effects contribute to a sinusoidal distribution of the time-averaged stream-wise velocity along the lateral direction, which is relatively weak right behind the spacer grid as well as in the gap. The streamwise and lateral turbulence intensities are stronger right behind the spacer grid and in the gap. Based on these findings, we newly defined a modified mixing coefficient as the ratio of the lateral turbulence intensity to the time-averaged streamwise velocity, which shows a spatial variation. Finally, we compared the developed model with the measured data, which shows a good agreement with each other.

Evaluation of Convective Heat Transfer Performance of Twist-Vane Spacer Grid in Rod Bundle Flow (봉다발 유동 내 비틀림 혼합날개 지지격자의 대류열전달 성능 평가)

  • Lee, Chi Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.157-164
    • /
    • 2016
  • The performance of convective heat transfer in rod bundle flow was experimentally evaluated using a twist-vane spacer grid. A $4{\times}4$ square-arrayed rod bundle was prepared as the test section, with a pitch-to-diameter ratio(P/D) of ~1.35. To check the convective heat transfer performance, the circumferential and longitudinal variations in rod-wall temperatures were measured downstream of the twist-vane spacer grid. In the circumferential measurements, the rod-wall temperature toward the twist-vane tip showed the lowest value, which might be due to the deflected water flow caused by the twist-vane. On the other hand, the wall temperature of the longitudinal measurements near the twist-vane spacer grid decreased dramatically, which implies that the convective heat transfer performance was enhanced. A heat transfer enhancement of ~35 % was achieved near downstream of the twist-vane spacer grid, as compared with the upstream value. Based on the present experimental data, a correlation for predicting the heat transfer performance of a twist-vane spacer grid was proposed.

Study on the Lateral Dynamic Crush Strength of a Spacer Grid Assembly for a LWR Nuclear Fuel Assembly (경수로 핵연료집합체 지지격자체의 횡방향 충격강도 연구)

  • Song, Kee-Nam;Lee, Sang-Hoon;Lee, Soo-Bum;Lee, Jae-Jun;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.9
    • /
    • pp.1175-1183
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components in a Light Water Reactor(LWR) nuclear fuel assembly. In the case of the Zircaloy spacer grid assembly, the primary design consideration is to ensure that lateral dynamic crush strength of the spacer grid assembly is sufficient to resist design basis loads and thereby prevent seismic accidents, without a significant increase in the hydraulic head loss for the reactor coolant in the reactor core. In this study, factors affecting the lateral dynamic crush strength of a spacer grid assembly were analyzed by performing lateral dynamic crush tests and finite element analyses. Further, an effective and economical method to enhance the lateral dynamic crush strength of the spacer grid assembly is proposed.

Performance and Welding Quality Analysis for the Zircaloy Spacer Grid Assembly of PWR Fuel (경수로 원전연료용 지르칼로이 지지격자체의 성능 및 용접품질 분석)

  • Song, Gi-Nam;Lee, Su-Beom;Kim, Yong-Wan;Kim, Su-Seong;Han, Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.203-205
    • /
    • 2007
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. And also, the spacer grid assembly is hydraulically required to have less hydraulic resistance of coolant. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, weld qualities such as, weld bead size and spatter manufactured by various welders were compared and analyzed. And performance parameters such as impact strength of spacer grid and hydraulic resistance of coolant were also compared and analyzed. Comparison results show that the weld qualities could be improved by selecting the optimal welding condition and also improving the welding technique.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Zircaloy Spacer Grid Assembly for PWR Fuel Assembly(III) (경수로 원전연료용 질칼로이 지지격자체의 LASER 용접품질 평가(III))

  • Song Gi-Nam;Yun Gyeong-Ho;Lee Gang-Hui;Kim Su-Seong;Han Hyeong-Jun
    • Proceedings of the KWS Conference
    • /
    • 2006.05a
    • /
    • pp.42-44
    • /
    • 2006
  • A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly for pressurized water reactors(PWRs). The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, a series of welding tests were carried out to find an optimum welding condition. After examining and analyzing the specimens welded from the welding conditions, a recommendable laser welding condition was selected for the KAERI designed Zircaloy spacer grid assembly.

  • PDF

Welding Quality Evaluation on the LASER Welding Parts of the Spacer Grid Assembly for PWR fuel Assembly (경수로 원전연료용 지지격자의 LASER 용접품질 평가)

  • Song, Gi-Nam;Yun, Jeong-Ho;Gang, Hong-Seok;Lee, Gang-Hui;Kim, U-Gon;Kim, Su-Seong
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.109-111
    • /
    • 2005
  • Nuclear fuel assemblies for pressurized water reactors(PWR) are loaded in the reactor core throughout the residence time of three to five years. A spacer grid assembly, which is an interconnected array of slotted grid straps and is welded at the intersections to form an egg crate structure, is one of the main structural components of the nuclear fuel assembly. The spacer grid assembly is structurally required to have enough buckling strength under various kinds of lateral loads acting on the nuclear fuel assembly so as to keep the nuclear fuel assembly straight. To meet this requirement, it is necessary to weld the welding parts carefully and precisely. In this study, laser welding qualities of the spacer grid assembly welded by several welding companies, such as weld strength, weld penetration depth, and weld bead size, are examined and compared.

  • PDF

Spacer Grid Assembly with Sliding Fuel Rod Support (삽입 및 이동 가능한 연료봉 지지부의 지지격자 형상)

  • Song, Kee-Nam;Lee, Sang-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.843-850
    • /
    • 2010
  • A spacer grid assembly is one of the most important structural components of the nuclear fuel assembly of a Pressurized Water Reactor (PWR). A primary design requirement is that the fuel rod integrity be maintained by the spacer grid assembly during the operation of the reactor. In this study, we suggested a new spacer grid assembly having a fuel rod support, which is capable of sliding when the fuel rod vibrates due to flow-induced vibrations in the reactor. By adjusting the relative displacement between the fuel rod and its support, the proposed design will help in reducing fuel rod fretting damage.

Lateral Crush Strength of Nuclear Fuel Spacer Grid Considering Weld Properties (용접물성치를 고려한 핵연료 지지격자체 횡방향 충격강도)

  • Song, Kee Nam;Lee, Sang Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1663-1668
    • /
    • 2012
  • A spacer grid, which is one of the structural components in a PWR fuel, is an interconnected array of slotted grid straps that are welded at the intersections to form an egg-crate structure. The spacer grid is required to have sufficient lateral crush strength to enable nuclear reactor shut-down during abnormal operating environments. Previous studies on the lateral crush strength analysis of the spacer grid were performed using only the base material properties. In this study, to investigate the effect of the lateral crush strength of the spacer grid when using the mechanical properties in the weld zone instead of the base material properties, lateral crush strength analysis by considering the mechanical properties in the weld zone as obtained from the instrumented indentation technique was performed, and the results were compared with those of previous studies.