• Title/Summary/Keyword: grid search algorithm

Search Result 111, Processing Time 0.028 seconds

Computation of Apparent Resistivity from Marine Controlled-source Electromagnetic Data for Identifying the Geometric Distribution of Gas Hydrate (가스 하이드레이트 부존양상 도출을 위한 해양 전자탐사 자료의 겉보기 비저항 계산)

  • Noh, Kyu-Bo;Kang, Seo-Gi;Seol, Soon-Jee;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.75-84
    • /
    • 2012
  • The sea layer in marine Controlled-Source Electromagnetic (mCSEM) survey changes the conventional definition of apparent resistivity which is used in the land CSEM survey. Thus, the development of a new algorithm, which computes apparent resistivity for mCSEM survey, can be an initiative of mCSEM data interpretation. First, we compared and analyzed electromagnetic responses of the 1D stratified gas hydrate model and the half-space model below the sea layer. Amplitude and phase components showed proper results for computing apparent resistivity than real and imaginary components. Next, the amplitude component is more sensitive to the subsurface resistivity than the phase component in far offset range and vice versa. We suggested the induction number as a selection criteria of amplitude or phase component to calculate apparent resistivity. Based on our study, we have developed a numerical algorithm, which computes appropriate apparent resistivity corresponding to measured mCSEM data using grid search method. In addition, we verified the validity of the developed algorithm by applying it to the stratified gas hydrate models with various model parameters. Finally, by constructing apparent resistivity pseudo-section from the mCSEM responses with 2D numerical models simulating gas hydrate deposits in the Ulleung Basin, we confirmed that the apparent resistivity can provide the information on the geometric distribution of the gas hydrate deposit.

Development of Classification Model for hERG Ion Channel Inhibitors Using SVM Method (SVM 방법을 이용한 hERG 이온 채널 저해제 예측모델 개발)

  • Gang, Sin-Moon;Kim, Han-Jo;Oh, Won-Seok;Kim, Sun-Young;No, Kyoung-Tai;Nam, Ky-Youb
    • Journal of the Korean Chemical Society
    • /
    • v.53 no.6
    • /
    • pp.653-662
    • /
    • 2009
  • Developing effective tools for predicting absorption, distribution, metabolism, excretion properties and toxicity (ADME/T) of new chemical entities in the early stage of drug design is one of the most important tasks in drug discovery and development today. As one of these attempts, support vector machines (SVM) has recently been exploited for the prediction of ADME/T related properties. However, two problems in SVM modeling, i.e. feature selection and parameters setting, are still far from solved. The two problems have been shown to be crucial to the efficiency and accuracy of SVM classification. In particular, the feature selection and optimal SVM parameters setting influence each other, which indicates that they should be dealt with simultaneously. In this account, we present an integrated practical solution, in which genetic-based algorithm (GA) is used for feature selection and grid search (GS) method for parameters optimization. hERG ion-channel inhibitor classification models of ADME/T related properties has been built for assessing and testing the proposed GA-GS-SVM. We generated 6 different models that are 3 different single models and 3 different ensemble models using training set - 1891 compounds and validated with external test set - 175 compounds. We compared single model with ensemble model to solve data imbalance problems. It was able to improve accuracy of prediction to use ensemble model.

A Study of Parallel Implementations of the Chimera Method using Unsteady Euler Equations (비정상 Euler 방정식을 이용한 Chimera 기법의 병렬처리에 관한 연구)

  • Cho K. W.;Kwon J. H.;Lee S.S
    • Journal of computational fluids engineering
    • /
    • v.4 no.3
    • /
    • pp.52-62
    • /
    • 1999
  • The development of a parallelized aerodynamic simulation process involving moving bodies is presented. The implementation of this process is demonstrated using a fully systemized Chimera methodology for steady and unsteady problems. This methodology consists of a Chimera hole-cutting, a new cut-paste algorithm for optimal mesh interface generation and a two-step search method for donor cell identification. It is fully automated and requires minimal user input. All procedures of the Chimera technique are parallelized on the Cray T3E using the MPI library. Two and three-dimensional examples are chosen to demonstrate the effectiveness and parallel performance of this procedure.

  • PDF

Android API anomaly Detection System Using One-class SVM algorithm (One-class SVM 알고리즘을 이용한 안드로이드 API의 이상치 탐지 시스템)

  • Ji-Eun LEE;Yu-Jun Choi;Yong-Tae Shin
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.562-564
    • /
    • 2023
  • 스마트폰 발전으로 인한 SNS(Social Network Service), 웹 검색 및 활용 등 편리함과 유용성을 가져다 주었지만 안드로이드 APP의 개방성으로 인하여 프로그램의 원칙적 특성을 악용한 취약점이 발생하고 있다. 이를 대응하는 해결방안으로 API에 대한 요청 데이터를 모듈을 통하여 로그 값을 수집한다. 수집된 데이터는 로그 값을 시간을 기준으로 라벨링하여 이상치 탐지 알고리즘인 OCSVM의 이상치 평균으로 사용하여 실시간 데이터 영향을 받는 하이퍼파라미터 C 와 r 값을 Grid Search 기법을 통해 조정함으로써 최적의 파라미터 값을 찾는 시스템을 제안한다.

An Algorithm for generating Cloaking Region Using Grids for Privacy Protection in Location-Based Services (위치기반 서비스에서 개인 정보 보호를 위한 그리드를 이용한 Cloaking 영역 생성 알고리즘)

  • Um, Jung-Ho;Kim, Ji-Hee;Chang, Jae-Woo
    • Journal of Korea Spatial Information System Society
    • /
    • v.11 no.2
    • /
    • pp.151-161
    • /
    • 2009
  • In Location-Based Services (LBSs), users requesting a location-based query send their exact location to a database server and thus the location information of the users can be misused by adversaries. Therefore, a privacy protection method is required for using LBS in a safe way. In this paper, we propose a new cloaking region generation algorithm using grids for privacy protection in LBSs. The proposed algorithm creates a m inimum cloaking region by finding L buildings and then performs K-anonymity to search K users. For this, we make use of not only a grid-based index structure, but also an efficient pruning techniques. Finally, we show from a performance analysis that our cloaking region generation algorithm outperforms the existing algorithm in term of the size of cloaking region.

  • PDF

3D Costmap Generation and Path Planning for Reliable Autonomous Flight in Complex Indoor Environments (복합적인 실내 환경 내 신뢰성 있는 자율 비행을 위한 3차원 장애물 지도 생성 및 경로 계획 알고리즘)

  • Boseong Kim;Seungwook Lee;Jaeyong Park;Hyunchul Shim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.337-345
    • /
    • 2023
  • In this paper, we propose a 3D LiDAR sensor-based costmap generation and path planning algorithm using it for reliable autonomous flight in complex indoor environments. 3D path planning is essential for reliable operation of UAVs. However, existing grid search-based or random sampling-based path planning algorithms in 3D space require a large amount of computation, and UAVs with weight constraints require reliable path planning results in real time. To solve this problem, we propose a method that divides a 3D space into several 2D spaces and a path planning algorithm that considers the distance to obstacles within each space. Among the paths generated in each space, the final path (Best path) that the UAV will follow is determined through the proposed objective function, and for this purpose, we consider the rotation angle of the 2D space, the path length, and the previous best path information. The proposed methods have been verified through autonomous flight of UAVs in real environments, and shows reliable obstacle avoidance performance in various complex environments.

Prediction models of rock quality designation during TBM tunnel construction using machine learning algorithms

  • Byeonghyun Hwang;Hangseok Choi;Kibeom Kwon;Young Jin Shin;Minkyu Kang
    • Geomechanics and Engineering
    • /
    • v.38 no.5
    • /
    • pp.507-515
    • /
    • 2024
  • An accurate estimation of the geotechnical parameters in front of tunnel faces is crucial for the safe construction of underground infrastructure using tunnel boring machines (TBMs). This study was aimed at developing a data-driven model for predicting the rock quality designation (RQD) of the ground formation ahead of tunnel faces. The dataset used for the machine learning (ML) model comprises seven geological and mechanical features and 564 RQD values, obtained from an earth pressure balance (EPB) shield TBM tunneling project beneath the Han River in the Republic of Korea. Four ML algorithms were employed in developing the RQD prediction model: k-nearest neighbor (KNN), support vector regression (SVR), random forest (RF), and extreme gradient boosting (XGB). The grid search and five-fold cross-validation techniques were applied to optimize the prediction performance of the developed model by identifying the optimal hyperparameter combinations. The prediction results revealed that the RF algorithm-based model exhibited superior performance, achieving a root mean square error of 7.38% and coefficient of determination of 0.81. In addition, the Shapley additive explanations (SHAP) approach was adopted to determine the most relevant features, thereby enhancing the interpretability and reliability of the developed model with the RF algorithm. It was concluded that the developed model can successfully predict the RQD of the ground formation ahead of tunnel faces, contributing to safe and efficient tunnel excavation.

SVR model reconstruction for the reliability of FBG sensor network based on the CFRP impact monitoring

  • Zhang, Xiaoli;Liang, Dakai;Zeng, Jie;Lu, Jiyun
    • Smart Structures and Systems
    • /
    • v.14 no.2
    • /
    • pp.145-158
    • /
    • 2014
  • The objective of this study is to improve the survivability and reliability of the FBG sensor network in the structural health monitoring (SHM) system. Therefore, a model reconstruction soft computing recognition algorithm based on support vector regression (SVR) is proposed to achieve the high reliability of the FBG sensor network, and the grid search algorithm is used to optimize the parameters of SVR model. Furthermore, in order to demonstrate the effectiveness of the proposed model reconstruction algorithm, a SHM system based on an eight-point fiber Bragg grating (FBG) sensor network is designed to monitor the foreign-object low velocity impact of a CFRP composite plate. Simultaneously, some sensors data are neglected to simulate different kinds of FBG sensor network failure modes, the predicting results are compared with non-reconstruction for the same failure mode. The comparative results indicate that the performance of the model reconstruction recognition algorithm based on SVR has more excellence than that of non-reconstruction, and the model reconstruction algorithm almost keeps the consistent predicting accuracy when no sensor, one sensor and two sensors are invalid in the FBG sensor network, thus the reliability is improved when there are FBG sensors are invalid in the structural health monitoring system.

A JXTA- based system for protein structure comparison (JXTA 기반 단백질 구조 비교 시스템)

  • Jung, Hyo-sook;Ahn, Jin-hyun;Park, Seong-bin
    • The Journal of Korean Association of Computer Education
    • /
    • v.12 no.4
    • /
    • pp.57-64
    • /
    • 2009
  • Protein structure comparison is a task that requires a lot of computing resources because many atoms in proteins need to be processed. To address the issue, Grid computing environment has been employed for processing time-consuming jobs in a distributed manner. However, controling the Grid computing environment may not be easy for non-experts. In this paper, we present a JXTA-based system for protein structure comparison that can be easily controled by non-experts. To search proteins similar to a query protein, the geometric hashing algorithm that consists of preprocessing and recognition was employed. Experimental results indicate that the system can find the correct protein structure for a given query protein structure and the proposed system can be easily extended to solve the protein docking problem. It is expected that the proposed system can be useful for non-experts, especially users who do not have sophisticated knowledge of distributed systems in general such as college students who major in biology or chemistry.

  • PDF

Seismic response of soil-structure interaction using the support vector regression

  • Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.115-124
    • /
    • 2017
  • In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.