• Title/Summary/Keyword: grid search algorithm

Search Result 111, Processing Time 0.027 seconds

A Study on the Prediction of Disc Cutter Wear Using TBM Data and Machine Learning Algorithm (TBM 데이터와 머신러닝 기법을 이용한 디스크 커터마모 예측에 관한 연구)

  • Tae-Ho, Kang;Soon-Wook, Choi;Chulho, Lee;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.502-517
    • /
    • 2022
  • As the use of TBM increases, research has recently increased to to analyze TBM data with machine learning techniques to predict the exchange cycle of disc cutters, and predict the advance rate of TBM. In this study, a regression prediction of disc cutte wear of slurry shield TBM site was made by combining machine learning based on the machine data and the geotechnical data obtained during the excavation. The data were divided into 7:3 for training and testing the prediction of disc cutter wear, and the hyper-parameters are optimized by cross-validated grid-search over a parameter grid. As a result, gradient boosting based on the ensemble model showed good performance with a determination coefficient of 0.852 and a root-mean-square-error of 3.111 and especially excellent results in fit times along with learning performance. Based on the results, it is judged that the suitability of the prediction model using data including mechanical data and geotechnical information is high. In addition, research is needed to increase the diversity of ground conditions and the amount of disc cutter data.

Cloud P2P OLAP: Query Processing Method and Index structure for Peer-to-Peer OLAP on Cloud Computing (Cloud P2P OLAP: 클라우드 컴퓨팅 환경에서의 Peer-to-Peer OLAP 질의처리기법 및 인덱스 구조)

  • Joo, Kil-Hong;Kim, Hun-Dong;Lee, Won-Suk
    • Journal of Internet Computing and Services
    • /
    • v.12 no.4
    • /
    • pp.157-172
    • /
    • 2011
  • The latest active studies on distributed OLAP to adopt a distributed environment are mainly focused on DHT P2P OLAP and Grid OLAP. However, these approaches have its weak points, the P2P OLAP has limitations to multidimensional range queries in the cloud computing environment due to the nature of structured P2P. On the other hand, the Grid OLAP has no regard for adjacency and time series. It focused on its own sub set lookup algorithm. To overcome the above limits, this paper proposes an efficient central managed P2P approach for a cloud computing environment. When a multi-level hybrid P2P method is combined with an index load distribution scheme, the performance of a multi-dimensional range query is enhanced. The proposed scheme makes the OLAP query results of a user to be able to reused by other users' volatile cube search. For this purpose, this paper examines the combination of an aggregation cube hierarchy tree, a quad-tree, and an interval-tree as an efficient index structure. As a result, the proposed cloud P2P OLAP scheme can manage the adjacency and time series factor of an OLAP query. The performance of the proposed scheme is analyzed by a series of experiments to identify its various characteristics.

Partial Dimensional Clustering based on Projection Filtering in High Dimensional Data Space (대용량의 고차원 데이터 공간에서 프로젝션 필터링 기반의 부분차원 클러스터링 기법)

  • 이혜명;정종진
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.4
    • /
    • pp.69-88
    • /
    • 2003
  • In high dimensional data, most of clustering algorithms tend to degrade the performance rapidly because of nature of sparsity and amount of noise. Recently, partial dimensional clustering algorithms have been studied, which have good performance in clustering. These algorithms select the dimensional data closely related to clustering but discard the dimensional data which are not directly related to clustering in entire dimensional data. However, the traditional algorithms have some problems. At first, the algorithms employ grid based techniques but the large amount of grids make worse the performance of algorithm in terms of computational time and memory space. Secondly, the algorithms explore dimensions related to clustering using k-medoid but it is very difficult to determine the best quality of k-medoids in large amount of high dimensional data. In this paper, we propose an efficient partial dimensional clustering algorithm which is called CLIP. CLIP explores dense regions for cluster on a certain dimension. Then, the algorithm probes dense regions on a next dimension. dependent on the dense regions of the explored dimension using incremental projection. CLIP repeats these probing work in all dimensions. Clustering by Incremental projection can prune the search space largely and reduce the computational time considerably. We evaluate the performance(efficiency, effectiveness and accuracy, etc.) of the proposed algorithm compared with other algorithms using common synthetic data.

  • PDF

Development of Intelligent ATP System Using Genetic Algorithm (유전 알고리듬을 적용한 지능형 ATP 시스템 개발)

  • Kim, Tai-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.4
    • /
    • pp.131-145
    • /
    • 2010
  • The framework for making a coordinated decision for large-scale facilities has become an important issue in supply chain(SC) management research. The competitive business environment requires companies to continuously search for the ways to achieve high efficiency and lower operational costs. In the areas of production/distribution planning, many researchers and practitioners have developedand evaluated the deterministic models to coordinate important and interrelated logistic decisions such as capacity management, inventory allocation, and vehicle routing. They initially have investigated the various process of SC separately and later become more interested in such problems encompassing the whole SC system. The accurate quotation of ATP(Available-To-Promise) plays a very important role in enhancing customer satisfaction and fill rate maximization. The complexity for intelligent manufacturing system, which includes all the linkages among procurement, production, and distribution, makes the accurate quotation of ATP be a quite difficult job. In addition to, many researchers assumed ATP model with integer time. However, in industry practices, integer times are very rare and the model developed using integer times is therefore approximating the real system. Various alternative models for an ATP system with time lags have been developed and evaluated. In most cases, these models have assumed that the time lags are integer multiples of a unit time grid. However, integer time lags are very rare in practices, and therefore models developed using integer time lags only approximate real systems. The differences occurring by this approximation frequently result in significant accuracy degradations. To introduce the ATP model with time lags, we first introduce the dynamic production function. Hackman and Leachman's dynamic production function in initiated research directly related to the topic of this paper. They propose a modeling framework for a system with non-integer time lags and show how to apply the framework to a variety of systems including continues time series, manufacturing resource planning and critical path method. Their formulation requires no additional variables or constraints and is capable of representing real world systems more accurately. Previously, to cope with non-integer time lags, they usually model a concerned system either by rounding lags to the nearest integers or by subdividing the time grid to make the lags become integer multiples of the grid. But each approach has a critical weakness: the first approach underestimates, potentially leading to infeasibilities or overestimates lead times, potentially resulting in excessive work-inprocesses. The second approach drastically inflates the problem size. We consider an optimized ATP system with non-integer time lag in supply chain management. We focus on a worldwide headquarter, distribution centers, and manufacturing facilities are globally networked. We develop a mixed integer programming(MIP) model for ATP process, which has the definition of required data flow. The illustrative ATP module shows the proposed system is largely affected inSCM. The system we are concerned is composed of a multiple production facility with multiple products, multiple distribution centers and multiple customers. For the system, we consider an ATP scheduling and capacity allocationproblem. In this study, we proposed the model for the ATP system in SCM using the dynamic production function considering the non-integer time lags. The model is developed under the framework suitable for the non-integer lags and, therefore, is more accurate than the models we usually encounter. We developed intelligent ATP System for this model using genetic algorithm. We focus on a capacitated production planning and capacity allocation problem, develop a mixed integer programming model, and propose an efficient heuristic procedure using an evolutionary system to solve it efficiently. This method makes it possible for the population to reach the approximate solution easily. Moreover, we designed and utilized a representation scheme that allows the proposed models to represent real variables. The proposed regeneration procedures, which evaluate each infeasible chromosome, makes the solutions converge to the optimum quickly.

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.

A Smart Set-Pruning Trie for Packet Classification (패킷 분류를 위한 스마트 셋-프루닝 트라이)

  • Min, Seh-Won;Lee, Na-Ra;Lim, Hye-Sook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.11B
    • /
    • pp.1285-1296
    • /
    • 2011
  • Packet classification is one of the basic and important functions of the Internet routers, and it became more important along with new emerging application programs requiring real-time transmission. Since packet classification should be accomplished in line-speed on each incoming input packet for multiple header fields, it becomes one of the challenges in designing Internet routers. Various packet classification algorithms have been proposed to provide the high-speed packet classification. Hierarchical approach achieves effective packet classification performance by significantly narrowing down the search space whenever a field lookup is completed. However, hierarchical approach involves back-tracking problem. In order to solve the problem, set-pruning trie and grid-of-trie algorithms are proposed. However, the algorithm either causes excessive node duplication or heavy pre-computation. In this paper, we propose a smart set-pruning trie which reduces the number of node duplication in the set-pruning trie by the simple merging of the lower-level tries. Simulation result shows that the proposed trie has the reduced number of copied nodes by 2-8% compared with the set-pruning trie.

Reaction coefficient assessment and rechlorination optimization for chlorine residual equalization in water distribution networks (상수도 잔류염소농도 균등화를 위한 반응계수 추정 및 염소 재투입 최적화)

  • Jeong, Gimoon;Kang, Doosun;Hwang, Taemun
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.spc1
    • /
    • pp.1197-1210
    • /
    • 2022
  • Recently, users' complaints on drinking water quality are increasing according to emerging interest in the drinking water service issues such as pipe aging and various water quality accidents. In the case of drinking water quality complaints, not only the water pollution but also the inconvenience on the chlorine residual for disinfection are included, thus various efforts, such as rechlorination treatment, are being attempted in order to keep the chlorine concentration supplied evenly. In this research, for a more accurate water quality simulation of water distribution network, the water quality reaction coefficients were estimated, and an optimization method of chlorination/ rechlorination scheduling was proposed consideirng satisfaction of water quality standards and chlorine residual equalization. The proposed method was applied to a large-scale real water network, and various chlorination schemes were comparatively analyzed through the grid search algorithm and optimized based on the suitability and uniformity of supplied chlorine residual concentration.

Development of Sentiment Analysis Model for the hot topic detection of online stock forums (온라인 주식 포럼의 핫토픽 탐지를 위한 감성분석 모형의 개발)

  • Hong, Taeho;Lee, Taewon;Li, Jingjing
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.187-204
    • /
    • 2016
  • Document classification based on emotional polarity has become a welcomed emerging task owing to the great explosion of data on the Web. In the big data age, there are too many information sources to refer to when making decisions. For example, when considering travel to a city, a person may search reviews from a search engine such as Google or social networking services (SNSs) such as blogs, Twitter, and Facebook. The emotional polarity of positive and negative reviews helps a user decide on whether or not to make a trip. Sentiment analysis of customer reviews has become an important research topic as datamining technology is widely accepted for text mining of the Web. Sentiment analysis has been used to classify documents through machine learning techniques, such as the decision tree, neural networks, and support vector machines (SVMs). is used to determine the attitude, position, and sensibility of people who write articles about various topics that are published on the Web. Regardless of the polarity of customer reviews, emotional reviews are very helpful materials for analyzing the opinions of customers through their reviews. Sentiment analysis helps with understanding what customers really want instantly through the help of automated text mining techniques. Sensitivity analysis utilizes text mining techniques on text on the Web to extract subjective information in the text for text analysis. Sensitivity analysis is utilized to determine the attitudes or positions of the person who wrote the article and presented their opinion about a particular topic. In this study, we developed a model that selects a hot topic from user posts at China's online stock forum by using the k-means algorithm and self-organizing map (SOM). In addition, we developed a detecting model to predict a hot topic by using machine learning techniques such as logit, the decision tree, and SVM. We employed sensitivity analysis to develop our model for the selection and detection of hot topics from China's online stock forum. The sensitivity analysis calculates a sentimental value from a document based on contrast and classification according to the polarity sentimental dictionary (positive or negative). The online stock forum was an attractive site because of its information about stock investment. Users post numerous texts about stock movement by analyzing the market according to government policy announcements, market reports, reports from research institutes on the economy, and even rumors. We divided the online forum's topics into 21 categories to utilize sentiment analysis. One hundred forty-four topics were selected among 21 categories at online forums about stock. The posts were crawled to build a positive and negative text database. We ultimately obtained 21,141 posts on 88 topics by preprocessing the text from March 2013 to February 2015. The interest index was defined to select the hot topics, and the k-means algorithm and SOM presented equivalent results with this data. We developed a decision tree model to detect hot topics with three algorithms: CHAID, CART, and C4.5. The results of CHAID were subpar compared to the others. We also employed SVM to detect the hot topics from negative data. The SVM models were trained with the radial basis function (RBF) kernel function by a grid search to detect the hot topics. The detection of hot topics by using sentiment analysis provides the latest trends and hot topics in the stock forum for investors so that they no longer need to search the vast amounts of information on the Web. Our proposed model is also helpful to rapidly determine customers' signals or attitudes towards government policy and firms' products and services.

The Fault Diagnosis Model of Ship Fuel System Equipment Reflecting Time Dependency in Conv1D Algorithm Based on the Convolution Network (합성곱 네트워크 기반의 Conv1D 알고리즘에서 시간 종속성을 반영한 선박 연료계통 장비의 고장 진단 모델)

  • Kim, Hyung-Jin;Kim, Kwang-Sik;Hwang, Se-Yun;Lee, Jang Hyun
    • Journal of Navigation and Port Research
    • /
    • v.46 no.4
    • /
    • pp.367-374
    • /
    • 2022
  • The purpose of this study was to propose a deep learning algorithm that applies to the fault diagnosis of fuel pumps and purifiers of autonomous ships. A deep learning algorithm reflecting the time dependence of the measured signal was configured, and the failure pattern was trained using the vibration signal, measured in the equipment's regular operation and failure state. Considering the sequential time-dependence of deterioration implied in the vibration signal, this study adopts Conv1D with sliding window computation for fault detection. The time dependence was also reflected, by transferring the measured signal from two-dimensional to three-dimensional. Additionally, the optimal values of the hyper-parameters of the Conv1D model were determined, using the grid search technique. Finally, the results show that the proposed data preprocessing method as well as the Conv1D model, can reflect the sequential dependency between the fault and its effect on the measured signal, and appropriately perform anomaly as well as failure detection, of the equipment chosen for application.

Locating Microseismic Events using a Single Vertical Well Data (단일 수직 관측정 자료를 이용한 미소진동 위치결정)

  • Kim, Dowan;Kim, Myungsun;Byun, Joongmoo;Seol, Soon Jee
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.2
    • /
    • pp.64-73
    • /
    • 2015
  • Recently, hydraulic fracturing is used in various fields and microseismic monitoring is one of the best methods for judging where hydraulic fractures exist and how they are developing. When locating microseismic events using single vertical well data, distances from the vertical array and depths from the surface are generally decided using time differences between compressional (P) wave and shear (S) wave arrivals and azimuths are calculated using P wave hodogram analysis. However, in field data, it is sometimes hard to acquire P wave data which has smaller amplitude than S wave because microseismic data often have very low signal to noise (S/N) ratio. To overcome this problem, in this study, we developed a grid search algorithm which can find event location using all combinations of arrival times recorded at receivers. In addition, we introduced and analyzed the method which calculates azimuths using S wave. The tests of synthetic data show the inversion method using all combinations of arrival times and receivers can locate events without considering the origin time even using only single phase. In addition, the method can locate events with higher accuracy and has lower sensitivity on first arrival picking errors than conventional method. The method which calculates azimuths using S wave can provide reliable results when the dip between event and receiver is relatively small. However, this method shows the limitation when dip is greater than about $20^{\circ}$ in our model test.