• Title/Summary/Keyword: gression estimator

Search Result 1, Processing Time 0.013 seconds

Variance Estimation for General Weight-Adjusted Estimator (가중치 보정 추정량에 대한 일반적인 분산 추정법 연구)

  • Kim, Jae-Kwang
    • The Korean Journal of Applied Statistics
    • /
    • v.20 no.2
    • /
    • pp.281-290
    • /
    • 2007
  • Linear estimator, a weighted sum of the sample observation, is commonly adopted to estimate the finite population parameters such as population totals in survey sampling. The weight for a sampled unit is often constructed by multiplying the base weight, which is the inverse of the first-order inclusion probability, by an adjustment term that takes into account of the auxiliary information obtained throughout the population. The linear estimator using the weight adjustment is often more efficient than the one using only the bare weight, but its valiance estimation is more complicated. We discuss variance estimation for a general class of weight-adjusted estimator. By identifying that the weight-adjusted estimator can be viewed as a function of estimated nuisance parameters, where the nuisance parameters were used to incorporate the auxiliary information, we derive a linearization of the weight-adjusted estimator using a Taylor expansion. The method proposed here is quite general and can be applied to wide class of the weight-adjusted estimators. Some examples and results from a simulation study are presented.