• Title/Summary/Keyword: greenhouses

Search Result 639, Processing Time 0.03 seconds

Shoot Rot of Spikenard Caused by Rhizoctonia solani AG-2-1

  • Moon, Youn-Gi;Seo, Hyun-Taek;Park, Ki-Jin;Kim, Wan-Gyu
    • Research in Plant Disease
    • /
    • v.28 no.1
    • /
    • pp.51-53
    • /
    • 2022
  • In January 2021, unusual outbreak of shoot rot symptoms was observed in young spikenard (Aralia cordata) plants growing in vinyl greenhouses located in Chuncheon and Yanggu, Gangwon Province, Korea. The symptoms initially appeared on young shoots of the plants at or above the soil surface level. Later, the infected shoots wholly rotted and blighted. The incidence of diseased plants in the vinyl greenhouses investigated ranged from 5% to 30%. Eight isolates of Rhizoctonia sp. were obtained from shoot lesions of the diseased plants. All the isolates were identified as Rhizoctonia solani AG-2-1 based on the morphological characteristics and anastomosis test. Three isolates of R. solani AG-2-1 were tested for pathogenicity on young shoots of spikenard plants using artificial inoculation. All the tested isolates induced shoot rot symptoms on the inoculated plants. The symptoms were similar to those observed in spikenard plants from the vinyl greenhouses investigated. This is the first report of R. solani AG-2-1 causing shoot rot in spikenard.

Variation of CO2 Concentration in Greenhouses and Effects on Growth and Yield in Alstroemeria with CO2 Supplementation

  • Seonjin Lee;WonSuk Sung;Donguk Park;Pilsoo Jeong
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.231-238
    • /
    • 2023
  • We analyzed the variations in the CO2 concentration and temperature between a CO2-enriched and control greenhouse. We cultivated Alstroemeria 'Hanhera' in the two greenhouses and assessed the growth parameters (stem length, stem thickness, and the number of flowers) and yield. The CO2-enriched greenhouse had a CO2 generator that produced CO2 at rate of 0.36 kg/h and its windows were programmed to open when the temperature exceeded 20℃ and close when it dropped below 15℃. The control greenhouse had no additional CO2 supplementation, and its windows were programmed to open when the temperature exceeded 20℃ and close at approximately 17:00. In the morning, CO2 concentration remained above 500 ppm in the CO2-enriched greenhouse, which was higher than that in the control greenhouse (approximately 370 ppm). The ventilation effect only through the side windows to reduce the temperature in both greenhouses did not appear dynamically. CO2 supplementation promoted plant growth, resulting in a significant increase in plant yield of over 60% compared to that of the control greenhouse. Our findings suggest that elevated CO2 concentration in the morning can significantly promote the growth and development of Alstroemeria during the winter.

Analysis of Relationship between Underground Part Environment Control and Growth and Yield of Sweet Pepper in Greenhouses as Affected by Covering Materials (피복재 종류에 따른 착색단고추 재배온실의 지하부 환경 관리와 생육 및 생산성과의 관계 분석)

  • Kim, Ho-Cheol;Park, Su-Min;Lee, Jeong-Hyun;Kang, Jong-Goo;Bae, Jong-Hyang
    • Journal of Bio-Environment Control
    • /
    • v.20 no.1
    • /
    • pp.8-13
    • /
    • 2011
  • This research was carried out to investigate relationship between underground part environment control and growth or yield of sweet pepper in greenhouse as affected by covering materials. Daily amount of applied nutrient solution for research period in the greenhouse of plasticfilm house was more 1.6 times than that in glass house. But daily absorptance rate of nutrient solution and specific electrical conductance of rockwool between two greenhouses were not different in the range of 71.3-73.3% and $4.17{\sim}4.23dS{\cdot}m^{-1}$ respectively. Leaf area of sweet pepper, in leaf growth characteristics in two greenhouses, were $123.0cm^2$/leaf (in glass house) and $119.5cm^2$/leaf (in plasticfilm house), but the another (fresh and dry weight, dry matter) were not different. But weekly yield per square meter in glass house was more 1.3 times than that in plasticfilm house as $850g{\cdot}m^{-2}$ and $650g{\cdot}m^{-2}$, respectively. Effect of slab EC and absorptance rate of nutrient solution on leaf growth characteristics and yield between two greenhouses were not different. The results show when sweet pepper is cultured in greenhouse as affected by covering materials and above ground part environment, the plant growth and yield are little affected by underground part environment.

Analysis of $CO_2$ and Harmful Gases Caused by Using Burn-type $CO_2$ Generators in Greenhouses (연소식 $CO_2$ 발생기 사용시 온실 내 $CO_2$ 및 유해가스 농도 분석)

  • Park, Jong-Seok;Shin, Jong-Wha;Ahn, Tae-In;Son, Jung-Eek
    • Journal of Bio-Environment Control
    • /
    • v.19 no.4
    • /
    • pp.177-183
    • /
    • 2010
  • Bum-type $CO_2$ generators are widely used in greenhouses for the purpose of $CO_2$ supply for photosynthesis and greenhouse heating. However harmful gases included in the air might give severe effects on the plant growth. For investigating the possible emission of harmful gases from commercial bum-type $CO_2$ generators, we carried out the analysis of the harmful by-products (NO, NOx, $NO_2$, CO, and VOCs) and $CO_2$ caused by using a bum-type $CO_2$ generator in greenhouses. And the harmful by-products from different type of fuels such as kerosene, LPG, and LNG were quantified. In order to minimize the uncertainties from a $CO_2$ generator, 4 different $CO_2$ generators were utilized in four plastic greenhouses and a glasshouse located at different places during the experimental works. The results showed that the concentration of NOx is proportional to $CO_2$ concentration. Levels of harmful gases in the most of greenhouses, where the new bum-type $CO_2$ generators were installed, were lower than 1.0 ppm when $CO_2$ concentration was set at 1,000 ppm. In case of LNG combustion, the concentration of CO reached out up to 300 ppm and pre-treatment for CO reduction, such as the adsorption process, would be inevitable to abate the adverse effects on plant growth.

Analysis of Temperature Changes in Greenhouses with Recirculated Water Curtain System (순환식 수막하우스의 수온에 따른 플라스틱 온실 내 온도변화 분석)

  • Kim, Hyung-Kweon;Jeon, Jong-Gil;Paek, Yee;Pyo, Hee-Young;Jeong, Jae-Woan;Kim, Yong-Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.2
    • /
    • pp.93-99
    • /
    • 2015
  • The purpose of this study was to determine the appropriate temperature for water curtain in greenhouses equipped with recirculated water curtain system. The study analyzed the changes in air temperature in non-heated greenhouses for strawberry cultivation based on outdoor temperature, water curtain temperature and night time. Three greenhouse units were used for this study: The first unit was assigned as a control (no water curtain system), two other greenhouses were equipped with recirculated water curtain system with water curtain temperatures of $10^{\circ}C$ and $15^{\circ}C$, respectively. Analysis showed that the indoor temperatures were directly correlated with the outdoor temperature in all experimental greenhouses. Heat insulating effect of $15^{\circ}C$ water curtain was increased by $1.3^{\circ}C$ compared to that in $10^{\circ}C$ water curtain system. The $15^{\circ}C$ water curtain treatment showed the highest average temperature and less temperature variation in comparison with control and $10^{\circ}C$ water curtain treatment. To maintain indoor temperature at $5^{\circ}C$, water curtain temperature of $10^{\circ}C$ was suitable when outdoor minimum and average temperatures were -1.3 and $1.5^{\circ}C$, and water curtain temperature of $15^{\circ}C$ was suitable when outdoor minimum and average temperatures were -4.7 and $-0.2^{\circ}C$, respectively. The highest temperature in greenhouses according to measurements in different periods of night time was observed after sunset (18:30-20:30), and the lowest temperature before sunrise (05:00-07:00). Water curtain maintained a target indoor temperature by acting as a layer of heat transfer insulator which decreased heat loss from greenhouses. Therefore, water temperature in recirculating water curtain systems should be determined by considering outdoor temperatures, changes in temperature at different periods of night time, and cultivated crop.

Effect of Pipes Layout and Flow Velocity on Temperature Distribution in Greenhouses with Hot Water Heating System (방열관의 배치와 관내 유속이 온수난방 온실의 온도분포에 미치는 영향)

  • Shin, Hyun-Ho;Kim, Young-Shik;Nam, Sang-Woon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.335-341
    • /
    • 2019
  • In order to provide basic data for uniformization of temperature distribution in heating greenhouses, heating experiments were performed in two greenhouses with a hot water heating system. By analyzing heat transfer characteristics and improving pipes layout, measures to reduce the variation of pipe surface temperature and to improve the uniformity were derived. As a result of analyzing the temperature distributions of two different greenhouses and examining the maximum deviation and uniformity, it was found that the temperature deviation of greenhouses with a large amount of hot water flow and a short heating pipe was small and the uniformity was high. And it was confirmed that the temperature deviation was reduced and the uniformity was improved when the circulating fan was operated. The correlation between the surface temperature of the heating pipe and the indoor air temperature was a positive correlation and statistically significant(p<0.01) in both greenhouses. It was confirmed that the indoor temperature distribution in a hot water heating greenhouse was influenced by the surface temperature distribution of heating pipe, and the uniformity of indoor temperature distribution could be improved by arranging the heating pipe to minimize the temperature deviation. Analysis of the heat transfer characteristics of heating pipe showed that the temperature deviation increased as the pipe length became longer and the temperature deviation became smaller as the flow rate in pipe increased. Therefore, it was considered that the temperature distribution and the uniformity of environment in a greenhouse could be improved by arranging the heating pipe to shorten the length and controlling the flow velocity in pipe. In order to control the temperature deviation of one branch pipe within $3^{\circ}C$ in the tube rail type hot water heating system most used in domestic greenhouses, when the flow velocity in the pipe is 0.2, 0.4, 0.6, 0.8, $1.0m{\cdot}s^{-1}$, the length of a heating pipe should be limited to 40, 80, 120, 160, 200m, respectively.

A Study on Buckling Characteristics of Arch-type Vinyl House Structures according to Analytical Precision (아치형 비닐하우스 구조의 해석정밀도에 따른 좌굴특성 연구)

  • Yoon, Seok-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.57-64
    • /
    • 2015
  • The construction of vinyl greenhouses are increasing because of economic feasibility, construction period, and construction regulations. However, the vinyl greenhouses are apt to collapse by snow load since they have a small member as a temporary structure. The 3 types of buckling such as global, member and nodal buckling could be occurred to arched structures according to characteristics of cross section. To examine the member buckling, the precision of analysis need to be enhanced. In that case, we can examine the characteristics of the those buckling. The purposes of this study are to verify buckling characteristics of structures using the method of high precision analysis with a center node of member. The results of high precision analysis bring member buckling, and in the analysis method having the center node of member, the value of strength is getting lower than a previous study.

Occurrence of Gray Mold in Freesia and Gladiolus Caused by Botrytis gladiolorum in Korea

  • Hong, Sung-Kee;Kim, Wan-Gyu;Cho, Weon-Dae;Kim, Hong-Gi
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.102-105
    • /
    • 2003
  • Gray mold severely occurred up to 50% in freesia and gladiolus grown in the fields and greenhouses in Korea from 1998 to 2000. Symptoms appeared as spot and blight on loaves and flowers of infected plants. A total of 25 isolates was obtained from infected plant parts. All the isolates were identified as Botrytis gladiolorum based on their morphological and cultural characteristics. Gray mold symptoms similar to those observed in the fields and greenhouses were induced on the plants of freesia and gladiolus by artificial inoculation with four isolates of the fungus. This is the first report of gray mold of freesia caused by B. gladiolorum in Korea.

A Study on the Utilization of Irrigation Systems for Greenhouse Farming (시설농업을 위한 관개시설의 이용실태 조사분석)

  • Lee, Nam-Ho;Hwang, Han-Cheol;Nam, Sang-Woon;Hong, Seong-Gu;Jeon, Woo-Jeong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.37-45
    • /
    • 1998
  • A survey was conducted to get information on the utilization of irrigation systems for greenhoyses farming. Three regions were selected which represent geographical chatacteristics such as neighboring urban area, flat-field area, and mountainous area. The number of greenhouses farms interviewed was 432 in total. The contents of the survey consisted of general characteristics of greenhouse farmers, the size and location of greenhouses, cultuvated crops, irrigation method, irrigation scheduling, and irrigation automation. The analysis of the surveyed data showed that greenhouse farmers did not take technical assistances. Proper criteria or guidelines for selection and operation of irrigation systems were not available. Irrigation systems were operated by hand. Irrigation scheduling were executed by farmer's experience. Maintenance of irrigation systems in general were poor. Development of economically reasonable irrigation system is of importance.

  • PDF