• 제목/요약/키워드: greenhouse horticulture

검색결과 365건 처리시간 0.023초

An Analysis of Purchasing and Using Fertilizer by Farmers (농업인의 비료 구매 및 사용 실태에 관한 연구)

  • Choi, Yoon-Ji;Gim, Gyung-Mee;Lee, Jing-Young;Kang, Kyeong-Ha;Yun, Sun-Gang
    • Journal of Agricultural Extension & Community Development
    • /
    • 제16권4호
    • /
    • pp.687-711
    • /
    • 2009
  • Recently, environmental-friendly agriculture (EFA) has been pointed out as an alternative for the change of our agricultural conditions. But the excessive amount of nutrients have been used to farmland since 1960s, when the intensive farming method called "High-Input, High-Yield" was expanded in earnest. This study was conducted to examine and compare farmers' purchasing and using fertilizer. For these purpose, data were gathered from a total of 326 farmers of the nation wide (greenhouse horticulture 60, upland cultivating 177, fruit-growing 89). The findings were as follows: First, 70.6% of greenhouse horticulture farmers, 89% of upland-cultivating farmers, 76.3% of fruit-growing farmers purchased fertilizer in Nong-hyup (farmers' cooperative organization). Second, only 54.2% of the greenhouse horticulture farmers, 60.2% of the upland cultivating farmers and 70.4% of the fruit-growing farmers recognized the optimum level of fertilizer. So, governmental organizations and agricultural technology center should carry out various programs for informing the farmers of the right way to use fertilizer and to practice EFA.

  • PDF

Analysis of Heat Transfer Characteristics in Response to Water Flow Rate and Temperature in Greenhouses with Water Curtain System (수막하우스의 유량 및 수온에 따른 열전달 특성 분석)

  • Kim, Hyung-Kweon;Kim, Seoung-Hee;Kwon, Jin-Kyeong
    • Journal of Bio-Environment Control
    • /
    • 제25권4호
    • /
    • pp.270-276
    • /
    • 2016
  • This study analysed overall heat transfer coefficient, heat transmission, and rate of indoor air heating provided by water curtain in order to determine the heat transfer characteristic of double-layered greenhouse equipped with a water curtain system. The air temperatures between the inner and outer layers were determined by the water flow rate and inlet water temperature. Higher water flow rate and inlet water temperature resulted in the increased overall heat transfer coefficient between indoor greenhouse air and water curtain. However, it was found that with higher levels of water flow rate and inlet water temperature, indoor overall heat transfer coefficient was converged about $10W{\cdot}m^{-2}{\cdot}^oC^{-1}$. The low correlation of overall heat transfer coefficient between water curtain and air within double layers was likely because the combination of greenhouse shape, wind speed and outdoor air temperature as well as water curtain affected the heat transfer characteristics. As water flow rate and inlet water temperature increased, the heat transferred into the greenhouse by water curtain also tend to rise. However it was demonstrated that the rate of heat transmission from water curtain into greenhouse with water curtain system using underground water was accounted for 22% to 28% for total heat lost by water curtain. The results of this study which quantify heat transfer coefficient and net heat transfer from water curtain may be a good reference for economical design of water curtain system.

Application of Greenhouse Climate Management Model for Educational Simulation Design (교육용 시뮬레이션 설계를 위한 온실 환경 제어 모델의 활용)

  • Yoon, Seungri;Kim, Dongpil;Hwang, Inha;Kim, Jin Hyun;Shin, Minju;Bang, Ji Wong;Jeong, Ho Jeong
    • Journal of Bio-Environment Control
    • /
    • 제31권4호
    • /
    • pp.485-496
    • /
    • 2022
  • Modern agriculture is being transformed into smart agriculture to maximize production efficiency along with changes in the 4th industrial revolution. However, rural areas in Korea are facing challenges of aging, low fertility, and population outflow, making it difficult to transition to smart agriculture. Among ICT technologies, simulation allows users to observe or experience the results of their choices through imitation or reproduction of reality. The combination of the three-dimension (3D) model and the greenhouse simulator enable a 3D experience by virtual greenhouse for fruits and vegetable cultivation. At the same time, it is possible to visualize the greenhouse under various cultivation or climate conditions. The objective of this study is to apply the greenhouse climate management model for simulation development that can visually see the state of the greenhouse environment under various micrometeorological properties. The numerical solution with the mathematical model provided a dynamic change in the greenhouse environment for a particular greenhouse design. Light intensity, crop transpiration, heating load, ventilation rate, the optimal amount of CO2 enrichment, and daily light integral were calculated with the simulation. The results of this study are being built so that users can be linked through a web page, and software will be designed to reflect the characteristics of cladding materials and greenhouses, cultivation types, and the condition of environmental control facilities for customized environmental control. In addition, environmental information obtained from external meteorological data, as well as recommended standards and set points for each growth stage based on experiments and research, will be provided as optimal environmental factors. This simulation can help growers, students, and researchers to understand the ICT technologies and the changes in the greenhouse microclimate according to the growing conditions.

Analysis of the Structural Safety in a Non-heating Greenhouse with a Single Cover for Citrus Cultivation in Jeju (제주지역 감귤재배용 단일피복 무가온하우스의 구조안전성 분석)

  • Yum Sung Hyun;Kim Hak Joo;Chun Hee;Lee Si Young;Kang Yun Im;Kim Young Hyo;Kim Yong Ho
    • Journal of Bio-Environment Control
    • /
    • 제14권3호
    • /
    • pp.166-173
    • /
    • 2005
  • This study was carried out to evaluate the structural stability in a non-heating greenhouse with a single cover for Citrus cultivation which was built up in Jeju on the basis of the drawing designed by Jejudo Agricultural Research & Extension Services and also to make use of the data for developing a standardized non-heating greenhouse in Jeju. The analysis of a structural stability was conducted by using CFX-5.7 and ANSYS under the design condition of a maximum accumulated snow-depth of 19.1 cm as well as an instantaneous maximum wind velocity of $36.6\;m{\cdot}s^{-1}$ which was set up on the basis of meteorological statistics in Jeju. As a result, the maximum von-Mises stress applied on pipes under the wind velocity of $36.6\;m{\cdot}s^{-1}$ showed a value of $250\;N{\cdot}mm^{-2}$ which was greater than the allowable stress of the pipe with a value of $235.4\;N{\cdot}mm^{-2}$ (=$2,400\;kg{\cdot}cm^{-2}$) and also $53.8\;N{\cdot}mm^{-2}$ under the snow-depth of 19.1 cm, respectively. This result suggested that the greenhouse be unstable under the design condition of an instantaneous wind velocity of $36.6\;m{\cdot}s^{-1}$ so that it was necessary for the greenhouse to be reinforced to secure the structural stability.

Effect of the Pipe Joint on Structural Performance of a Single-span Greenhouse: A Full-scale Experimental and Numerical Study (파이프 이음부가 단동온실 구조성능에 미치는 영향: 실대형 실험적 및 해석적 연구)

  • Shin, Hyun Ho;Ryu, Hee Ryong;Yu, In Ho;Cho, Myeong Whan;Seo, Tae Cheol;Kim, Seung Yu;Choi, Man Kwon
    • Journal of Bio-Environment Control
    • /
    • 제30권4호
    • /
    • pp.410-418
    • /
    • 2021
  • This study was conducted in 8.2m wide single-span greenhouse to investigate the effect of presence or absence of rafter steel pipe joint and foundation conditions on greenhouse structural performance. Structural performance was evaluated by static loading test using the structural performance evaluation system for single-span greenhouse. The measured displacement was compared with the predicted result by numerical analysis. The displacement of each measurement location showed a significant difference regardless of the conditions of the foundation and presence or absence of rafter steel pipe joint. Compared to the hinge conditions, the difference in structural performance of the greenhouse in the fixed conditions was seen to be relatively large. The difference in structural performance according to presence or absence of rafter steel pipe joints, the lateral stiffness of the joint was 8.1% greater.

Pest Control Effect using Unmanned Automatic Pesticide Spraying Device in Vegetable Greenhouse (시설채소 온실에서 무인 자동 약제 살포장치를 이용한 해충 방제효과)

  • Lee, Jung Sup;Lee, Jae Han;Bang, Ji Wong;Kim, Jin Hyun;Jang, Hye Sook
    • Journal of Bio-Environment Control
    • /
    • 제31권1호
    • /
    • pp.52-59
    • /
    • 2022
  • Pest control treatment was carried out using an unmanned automatic pesticide spraying system that can spray pesticides on crops while moving autonomously to control pests in vegetable greenhouse. As a result of examining the control effect on tomato and strawberry on thrips (Frankliniella occidentalis) and greenhouse whitefly (Trialeurodes vaporariorum) pests, 85.6% of yellow flower thrips were found in tomatoes and 87.5% in strawberries, and 81.7% (tomato) and 80.6% (strawberry) of greenhouse whitefly. In addition, the control effect according to the pesticide treatment method showed a control effect of 81.7% of the chemical spraying treatment by manpower and 83.9% of the automatic moving pesticide spraying treatment (F=22.1, p < 0.001). When comparing the control effect between the two treatment sections, there was no significance, but the automatic transfer spraying treatment showed a 2.2% higher effect. On the other hand, as a result of comparing the spraying time of the drug, the automatic unmanned control sprayer had a spraying time of 5 min/10a, which took about 25 min less than the conventional manpower spraying time of 25-30 min/10a. Based on these results, it was judged that the automatic transfer spraying method could be usefully used for efficient pest control in the facility greenhouse during the peak period of development.

Effects of Shield Materials on the Growth and Yield Characteristics of Melon Grown inside a Plastic Greenhouse in Summer Season (고온기 멜론 시설재배 시 자재별 차광 효과)

  • Lee, Jae Han;Lee, Jung Sup;Kwon, Joon Kook;Yeo, Kyung Hwan;Bang, Ji Woong;Kim, Jin Hyun;Lee, Choung Keun;Park, Kyoung Sub;Myung, Dong Ju
    • Journal of Bio-Environment Control
    • /
    • 제30권4호
    • /
    • pp.304-311
    • /
    • 2021
  • This Experiment was conducted to determine the effects of light shield materials when melon grown inside a plastic greenhouse in summer season. The average temperatures were 36.6℃, 34.5℃ and 34.0℃ respectively for the control(non-shield), coating agent, and the white net. The light transmittances were 69% and 75%, respectively inside the greenhouse treated with the coating agent and white net immediately after applicants, compared with that inside the control greenhouse. At the 40 and 80 days after treatment, the light transmittances for the coating agent were 92% and 98%, respectively, indicating it was slowly decomposed and removed, but there was no change in the transmittance for the white net. While the leaf number did not differ among the treatments, the plant height was higher in the white net and shading agent than in control. The weight of the leaves, fresh-weight and dry-weight were no different from that of shading, but it became heavier in the later stages. The marketable fruit yield was increased by 6% for white nets and 5% for the coating agent compared to control, there was no statistical significance. Therefore, coating agent is considered as an effective method to lower temperature during high temperature period, but it is preferable to use it in consideration of cultivation period, because the coating agent is gradually removed.

Structural Performance Evaluation of a Multi-span Greenhouse with Venlo-type Roof According to Bracing Installation (가새 설치에 따른 벤로형 지붕 연동온실의 구조성능 평가)

  • Shin, Hyun Ho;Choi, Man Kwon;Cho, Myeong Whan;Kim, Jin Hyun;Seo, Tae Cheol;Lee, Choung Kuen;Kim, Seung Yu
    • Journal of Bio-Environment Control
    • /
    • 제31권4호
    • /
    • pp.438-443
    • /
    • 2022
  • In this study, the lateral loading test was performed to analyze structural performance of multi-span plastic greenhouse through full-scale experiment and numerical analysis. In order to analyze the lateral stiffness and stress, we installed 9 displacement sensors and 19 strain gauge sensors on the specimen, respectively, and load of l mm per minute was applied until the specimen failure. In the comparison between the full-scale experiment and the structural analysis results of a multi-span greenhouse with venlo-type roof according to bracing installation, there was a large difference in the lateral stiffness of the structure. By installing a brace system, the lateral stiffness measured near the side elevation of the specimen increased by up 44%. As the bracing joint used in the field did not secure sufficient rigidity, the external force could not be transmitted to the entire structure properly. Therefore, it is necessary to establish a bracing construction method and design standards in order for a greenhouse to which bracing applied to have sufficient performance.

An Economic Analysis of Greenhouse Horticulture in Kyungsangnam-do (시설원예 농업의 경제성과 전망)

  • Lee Young Man
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 한국작물학회 1998년도 21세기 한반도 농업전망과 대책(한국작물학회.한국육종학회 공동주관 심포지움 회보)
    • /
    • pp.41-67
    • /
    • 1998
  • This study aimed at examining the investment and economic analysis of greenhouse horticultural project area by governmental subsidy project. There were only 5 project areas that economic efficiency of investment is recognized in 30 project area in Kyungsangnam-do. And there are 7 project areas to gain farm firm revenue. These were possible area to develop to farm firm. There are 4 project areas to gain farm firm revenue in 18 project areas of glass greenhouse area, and 8 project areas to gain farm firm revenue in 12 project areas-vinyl greenhouse area. The rate of return of the fixed capital is higher in the vinyl greenhouse area than in the glass greenhouse area by type of greenhouse. There were cultivated tomatoes, cucumbers, peppers, etc. in the greenhouse area. The investment efficiency of the fixed capital is higher in cucumber and pepper than in other vegetables. Flowers a re lower than the vegetable in investment efficiency.

  • PDF