• Title/Summary/Keyword: greenhouse horticulture

Search Result 365, Processing Time 0.025 seconds

Comparative Analysis of Lighting Intensity, Leaf Temperature, Transpiration Rate, and Vapor Pressure Deficit between the Top and Branching Point of Stem during Growing Period of Paprika Plant (파프리카 생장에 따른 줄기의 정부와 하부 간 광량, 엽온, 증산속도 및 수증기압포차 비교 분석)

  • Seung Mi Woo;Ho Cheol Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.6
    • /
    • pp.1097-1101
    • /
    • 2023
  • As paprika plants grew in a glass greenhouse from November 2022 to March 2023, the amount of light at each plant height, leaf temperature, transpiration rate, and water vapor pressure were measured. Accumulated leaf temperature was higher at the top of the plant than at the bottom. Over time, the leaf temperature measured around 11-13 AM changed from 26.55→23.21→22.80→26.67℃ in the lower part (pL), and from 26.52→24.48→24.55→27.78℃ in the upper part (pAs). And VPD changed from 1.45→0.94→0.74→1.46kPa in pL and from 1.11→0.86→0.71→1.28kPa in pAs. Accordingly, the transpiration rate changed from 4.25→0.17→4.08→0.52mmol·m-2·s-1 in pL, 7.61→2.45→1.94→4.39→0.52mmol·m-2·s-1 in pAs, and from pAs to pL. It was significantly higher than The difference between the lower and upper parts (pL-pAs) was higher in pAs than pL in leaf temperature, light intensity, and transpiration rate, but the water vapor pressure difference was higher in pL. In this way, paprika shows differences in the environment and photosynthetic factors between the upper and lower parts during the cultivation period, so it is judged that this needs to be taken into consideration in future research.

A Study on the Evaluation of Fertilizer Loss in the Drainage(Waste) Water of Hydroponic Cultivation, Korea (수경재배 유출 배액(폐양액)의 비료 손실량 평가 연구)

  • Jinkwan Son;Sungwook Yun;Jinkyung Kwon;Jihoon Shin;Donghyeon Kang;Minjung Park;Ryugap Lim
    • Journal of Wetlands Research
    • /
    • v.25 no.1
    • /
    • pp.35-47
    • /
    • 2023
  • Korean facility horticulture and hydroponic cultivation methods increase, requiring the management of waste water generated. In this study, the amount of fertilizer contained in the discharged waste liquid was determined. By evaluating this as a price, it was suggested to reduce water treatment costs and recycle fertilizer components. It was evaluated based on the results of major water quality analysis of waste liquid by crop, such as tomatoes, paprika, cucumbers, and strawberries, and in the case of P component, it was analyzed by converting it to the amount of phosphoric acid (P2O5). The amount of nitrogen (N) can be calculated by discharging 1,145.90kg·ha-1 of tomatoes, 920.43kg·ha-1 of paprika, 804.16kg·ha-1 of cucumbers, 405.83kg·ha-1 of strawberries, and the fertilizer content of P2O5 is 830.65kg·ha-1 of paprika, 622.32kg·ha-1 of tomatoes, 477.67kg·ha-1 of cucumbers. In addition, trace elements such as potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), and manganese (Mn) were also analyzed to be emitted. The price per kg of each item calculated by averaging the price of fertilizer sold on the market can be evaluated as KRW, N 860.7, P 2,378.2, K 2,121.7, Ca 981.2, Mg 1,036.3, Fe 126,076.9, Mn 62,322.1, Zn 15,825.0, Cu 31,362.0, B 4,238.0, Mo 149,041.7. The annual fertilizer loss amount for each crop was calculated by comprehensively considering the price per kg calculated based on the market price of fertilizer, the concentration of waste by crop analyzed earlier, and the average annual emission of hydroponic cultivation. As a result of the analysis, the average of the four hydroponic crops was 5,475,361.1 won in fertilizer ingredients, with tomatoes valued at 6,995,622.3 won, paprika valued at 7,384,923.8 won, cucumbers valued at 5,091,607.9 won, and strawberries valued at 2,429,290.6 won. It was expected that if hydroponic drainage is managed through self-treatment or threshing before discharge rather than by leaking it into a river and treating it as a pollutant, it can be a valuable reusable fertilizer ingredient along with reducing water treatment costs.

Qualitative Changes in Maturity, Precooling Temperatures and Light Illumination on the Post-harvest Management of the Fruits in 'Maehyang' Strawberry for Export (수출딸기 '매향'의 수확후 숙도, 예냉온도 및 광조사에 따른 품질변화)

  • Kim, Hye Min;Hwang, Seung Jae
    • Journal of Bio-Environment Control
    • /
    • v.22 no.4
    • /
    • pp.432-438
    • /
    • 2013
  • A study was conducted to examine the effect of maturity and precooling ($60%/0^{\circ}C$ and $80%/4^{\circ}C$), and light illumination on the storage life of 'Maehyang' strawberry meant for export. Fruits at 60% and 80% ripened stage were harvested from a commercial greenhouse in Jinju on April 3, 2012. Harvested fruits were transported to the precooling system within 30 minutes. Transported fruits were precooled the $4^{\circ}C$ for 2 hours and $0^{\circ}C$ for 5 hours by a forced draft cooling system, and then stored at $6^{\circ}C$. During the storage, the fruits were examined for their changes in hardness, soluble solid content, quality grade, acidity, Hunter value, weight loss, and the incidence of gray mold (Botrytis cinerea) at an interval of two days from April 5 to April 17. Hardness was decreased until 7th days and it was changed to increase at 9th days. Treatment of 60% maturity, $0^{\circ}C$ precooling and no light illumination of strawberry were shown the highest value in freshness. The soluble solid content harvested in 80% maturity strawberry was higher than 60% maturity strawberry until the third day. Quality grade decreased rapidly in 80% maturity stage with light illumination strawberry in comparison to the 60% maturity stage of strawberry. Hunter value 'L' and 'a' showed a rapid change in 60% maturity stage of strawberry. Weight loss decreased rapidly in 80% maturity, $0^{\circ}C$ precooling, and no light illumination of strawberry treatments. Gray mold incidence was found the most at 60% maturity, $4^{\circ}C$ precooling, and light illumination of strawberry. The results from our study indicate that effectiveness for keeping the freshness of strawberry was best achieved by harvesting in low maturity, precooling at $0^{\circ}C$, and with no light illumination.

Flowering and Morphological Responses of Petunia and Pansy as Influenced by Lamp Type and Lighting Period to Provide Long Days (장일처리 광원의 종류 및 광조사 시간에 따른 페튜니아와 팬지의 개화 및 형태학적 반응)

  • Oh, Wook;Runkle, Erik S.
    • Horticultural Science & Technology
    • /
    • v.34 no.2
    • /
    • pp.207-219
    • /
    • 2016
  • Incandescent (INC) lamps have been commonly used to promote flowering of long-day (LD) plants during short-day (SD) seasons, but production of INC lamps has been prohibited due to their low energy efficiency. One of the light sources replacing INC lamps is a compact fluorescent lamp (CFL). This study was carried out to compare the flowering and morphological responses of LD annuals grown in a controlled environment greenhouse at $20^{\circ}C$ with a truncated 9-h SD and a 2- or 4-h night interruption (NI) or 6-h day extension (DE) provided by lighting from INC lamps, CFLs, or a combination of the two (INC + CFLs), in which red (R) to far-red (FR) ratios were 0.60, 8.46, and 0.91, respectively, and their PPFDs were $2.3{\pm}0.3{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. After 12 weeks of treatment, $Petunia{\times}hybrida$ 'Wave Purple' plants did not flower under the SD photoperiod whereas 100% flowered under all of the LD treatments. Flowering was more rapid under the INC or INC + CFL lighting treatments compared to CFL and DE, and 4-h NI enhanced flowering compared to 2-h NI. In addition, plants under DE and 4h-NI generally flowered earlier than under 2-h NI. All petunia 'Single Dreams Red' plants flowered within 65 days after treatment, and flowering was hastened by some LD lighting regimens and lamp types. Plants under DE and 4h-NI generally flowered earlier than under 2-h NI INC or INC + CFL compared to FL, and flowering time under INC 6-h DE was earliest. In addition, INC lighting promoted stem elongation of both petunia cultivars. In both pansy (Viola${\times}wittrockiana$) 'Coiossus Yellow' and 'Delta Blue Blotch', LD treatments, especially using INC lamps, promoted flowering whereas the lighting period had little influence on days to flowering. Therefore, INC or INC + CFL with lower R:FR promoted flowering and stem extension and the promoting effect was larger with longer lighting periods. These results suggest that CFLs can be used to provide LDs to promote the flowering of petunia and pansy and to reduce stem elongation, although the promoting effect on flowering is sometimes less than that of INC lamps alone.

Genotypical Variation in Nitrate Accumulation of Lettuce and Spinach (상추와 시금치의 품종별 질산태 질소 축적 차이)

  • Chung, Jong-Bae;Lee, Yong-Woo;Choi, Hee-Youl;Park, Yong;Cho, Moon-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.1
    • /
    • pp.38-44
    • /
    • 2005
  • In addition to the variation in nitrate accumulation of vegetables due to environmental conditions, there is also a distinct genetic variation. The variation of nitrate accumulation in some cultivars of lettuce and spinach commonly cultivated in Korea was investigated. Ten cultivars for both lettuce and spinach were grown in plastic containers filled with a 1:1 mixture of perlite and vermiculite with application of Hoagland No. 2 nutrient solution of high nitrate content (17.3 mM N) in a greenhouse condition. Plants were harvested four weeks after transplanting four-leaf stage seedlings. Plant growth was measured by fresh and dry matter of shoot, and contents of nitrate and other inorganic ions and organic solutes including sugar, amino acids and organic acids were measured. Large and significant genotypical variations in the nitrate content of the plants were found for both lettuce and spinach, and high negative correlations between nitrate content and fresh or dry weight were found in lettuce and spinach. Variation in nitrate accumulation of lettuce and spinach cultivars was not directly related to the differences in contents of organic and inorganic solutes, and this result indicates that photosynthesis and osmotic regulation are not directly related with the nitrate accumulation. Considering the correlations between nitrate content and plant growth of this study, it can be simply suggested that different cultivars of lettuce and spinach have their own inherited growth and physiological characteristics and also optimum nitrogen level required for the growth. Therefore when available nitrogen in root media is higher than the optimum level required for the inherited growth potential, some of the excess nitrate supplied can be accumulated in plants.

A Function and Weight Selection of Ecosystem Service Function for the Eco-friendly Protected Horticulture Complex in Agricultural Landscape (시설원예단지의 친환경적 조성을 위한 생태계서비스 기능 및 가중치 산정)

  • SON, Jinkwan;KONG, Minjae;SHIN, Yukung;YUN, Sungwook;KANG, Donghyeon;Park, Minjung;LEE, Siyoung
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.533-541
    • /
    • 2017
  • Agricultural landscape has many ecosystem service functions. However, the development of the horticulture complex has no consideration for environmental conservation. Therefore, we analyzed the priorities of ecosystem service functions required for the composition. The study was conducted in three stages. As a result of the first survey, 17 functions were selected to be improved. In the second survey, 12 functions were selected excluding 5 functions. Finally, 1. Measures for water purification, 2. Groundwater recharge plan, 3. Surface water storage space, 4. Flood control measures, 5. Vegetation diversity space, 6. Carbon emission reduction plan, 7. Aquatic insect habitat space, 8. Amphibian reptiles 9. Landscape and Waste Management, 10. Bird Species Space, 11. Heat Island Mitigation Plan, 12. Experience / Ecological Education Plan. We proposed the structure, capacity, flow rate, arrangement and form of the water treatment facility to improve water quality by improving the function. We proposed a reservoir space of 7-10% for groundwater recharge. The development of reservoir and storage facilities suitable for the Korean situation is suggested for the surface water storage and flood control measures. And proposed to secure a green space for the climate cycle. Proposed habitat and nutrient discharge management for biodiversity. We propose green area development and wetland development to improve the landscape, and put into the facilities for experiential education. The results of the research can be utilized for the development and improvement of the horticultural complex.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11a
    • /
    • pp.29-30
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$\^$-1/) or TDZ (1-2 mg1$\^$-1/). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant. The second series of experiments was studied to investigate the effect of physical environment factors on growth of in vitro plantlets. The Anoectochilus formosanus plantlets were cultured under different air exchange rate (0.1, 0.9, 1.2h$\^$-1/), without sucrose or supplement 20g.1$\^$-1/ (photoautotrophic or photomixotrophic, respectively), and different photosynthesis photon flux (40, 80, 120 ,${\mu}$mol.m$^2$.s$\^$-1/- PPF). Under non-enrichment CO$_2$ treatment, slow growth was observed in photoautotrophical condition as compared with photomixotrophical condition on shoot height, fresh weigh and dry weight parameters; High air exchange (1.2.h-l) was found to be inadequate for plant growth in photomixotrophical condition. On the contrary, under CO$_2$, enrichment treatment, the plant growth parameters were sharply (visibly) improved on photoautotrophic treatments, especially on the treatment with air exchange rate of 0.9.h-1. The growth of plant in photoautotrophic condition was not inferior compared with photomixotrophic, and the best growth of plantlet was observed in treatment with low air exchange rate (0.9.h-1). Raising the PPF level from 80 to 120${\mu}$mol.m$\^$-2/.s$\^$-1/ decreased the plant height, particularly at 120${\mu}$mol.m$\^$-2/.s$\^$-1/ in photoautotrophic condition, fresh weight and dry weight declined noticeably. At the PPF of 120${\mu}$mol.m$\^$-2/,s$\^$-1/, chlorophyll contents lowed compared to those grown under low PPF but time courses of net photosynthesis rate was decreased noticeably. Light quality mainly affected morphological variables, changes of light quality also positively affected biomass production via changes in leaf area, stem elongation, chlorophyll content. Plant biomass was reduced when A. formosanus were grown under red LEDs in the absence of blue wavelengths compare to plants grown under supplemental blue light or under fluorescent light. Stem elongation was observed under red and blue light in the present experiment. Smaller leaf area has found under blue light than with other lighting treatments. Chlorophyll degradation was more pronounced in red and blue light compared with white light or red plus blue light which consequent affected the photosynthetic capacity of the plant. The third series of experiment were studied to investigate the effect of physical environment factors on growth of ex vitro plants including photosynthesis photon flux (PPF), light quality, growing substrates, electrical conductivity (EC) and humidity conditions. In the present experiments, response of plant on PPF and light quality was similar in vitro plants under photosynthesis photon flux 40${\mu}$mol.m,$\^$-2/.s$\^$-1/ and white light or blue plus red lights were the best growth. Substrates testing results were indicated cocopeat or peat moss were good substrates for A. formosanus growth under the greenhouse conditions. In case of A. formosanus plants, EC is generally maintained in the range 0.7 to 1.5 dS.m-1 was shown best results in growth of this plant. Keeping high humidity over 70% under low radiation enhanced growth rate and mass production.

  • PDF

Effect of Shading Methods on Growth and Fruit Quality of Paprika in Summer Season (파프리카 여름재배시 차광방법이 생육과 과실특성에 미치는 영향)

  • Ha, Jun Bong;Lim, Chae Shin;Kang, Hyo Yong;Kang, Yang Su;Hwang, Seung Jae;Mun, Hyung Su;An, Chul Geon
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2012
  • This study was carried out to investigate the effect of two shading methods, shading agent spray on the glasshouse and internal shading screen treatment, on the growth and fruit quality of paprika (Capsicum annuum L. 'Cupra' and 'Coletti') in summer season cultivation. In the shading agent treatment, a commercial shading agent diluted with water at a ratio of 1 : 4 was sprayed on the roof of a glasshouse. In the internal shading screen treatment, a 10~20% shaded screen was used during the day time when the sun radiation was greater than $700W{\cdot}m^{-2}$. Compared to the unshaded control, photosynthetic photon flux density (PPFD) decreased in the greenhouse in the shading agent (SA) and shading screen (SS) treatments by 20% and 30%, respectively. Lower air temperatures and higher relative humidities were observed in the SA than in both the control and the SS treatment. Time to reach the break point of humidity deficit $8g{\cdot}m^{-3}$ was 2 hours late in the SA than in both the control and the SS treatment. Compared to control, both the SA and the SS treatments showed lower instantaneous temperatures of leaf, fruit, and flower by $2^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively. There were no differences in number of branches, stem diameter, and leaf size among treatments although both shading treatments promoted plant height in both cultivars. Botrytis infection ratio declined with the SA treatment by 14.7% in 'Cupra' and 22.1% in 'Coletti' as compared to that in the control. Shading increased fruit size in both cultivars, whereas no differences were observed in the number of locules and thickness of fruit tissue among treatments. Shading treatment increased mean fruit weight by a range of 10 to 15 g per fruit, while it decreased soluble solids contents as compared to that in the control. Similar Hunter values were observed among treatments, while fruit firmness increased slightly in shading treatments. Compared to the control, shading treatments improved marketable fruits by 11.7~22.6% and increased the number of fruits per plant by 4~9.2 in both 'Cupra' and 'Coletti'. The results of this study indicate that shading agent application on the roof of glasshouse would be one of the most effective options to reduce heat stress imposed on the paprika crop in summer cultivation, resulting in improved crop growth and fruit yield.

Effect of Topophysis and Uniting Method of Rootstock and Scion on Rooting and Subsequent Growth of Stenting-propagated (Cutting-grafted) Roses (접수의 채취부위 및 접수와 대목의 고정법에 따른 장미 접삽묘의 생육 특성)

  • Park, Yoo-Gyeong;Jeong, Byoung-Ryong
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.456-461
    • /
    • 2010
  • A study was conducted to investigate the effect of topophysis, and uniting method of rootstock and scion on rooting and subsequent growth of stenting-propagated cut rose ($Rosa$ $hybrida$ Hort.) in an effort to develop an efficient stenting propagation method for domestic rose cultivars. Four cultivars used in this study were two standard type cultivars 'Sweet Yellow' and 'Hanmaum', and two spray type cultivars 'Chelsi' and 'May'. Scions were grafted on cuttings of a rootstock $Rosa$ $indica$ 'Major'. The stenting-propagated scion-rootstock unions were planted in rockwool cubes ($50{\times}50{\times}50mm$, Delta, Grodan, Denmark) and were placed in a graft-take chamber for five days before being placed on misted greenhouse beds. The rootstock was removed of all leaves and nodes. Both the base of scions and top of stocks were simultaneously cut at a $45^{\circ}$ angle for grafting. Scions were prepared as single node cuttings, each with a five-leaflet leaf. Three positions of topophysis used were 7-9th (top), 4-6th (middle), and 1st-3rd (bottom) nodes from the stem base. Four uniting materials used were tube, tube + parafilm wrap, tube + clothespin, and clothespin. Rooting and growth were affected by the topophysis and cultivar. The best topophysis for rooting was 7-9th (top) nodes in all cultivars. Topophysis affected percent rooting, and number of roots, length of the longest root, and but not weight, shoot length and graft-take. Rooting and growth were affected by the uniting method and cultivar. Tube uniting method generally showed higher percentage graft-take, percent rooting, and number of roots than other methods. However, rootstock and scion union was not complete in this treatment. On the whole, the greatest rooting and subsequent growth of stenting-propagated plants were found in the tube + clothespin method. Except 'Sweet Yellow', rooting and growth were not adequate in the clothespin method. The results suggested that a tube + clothespin method was the most effective, and this method may be used as a substitute to save labor compared to a tube + parafilm wrap method which is currently being used in commercial nurseries.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.