• Title/Summary/Keyword: greenhouse heating performance

Search Result 99, Processing Time 0.022 seconds

Study on the performance analysis of long-term field test for protected horticulture heating system using solar thermal energy (태양열 시설원예 난방시스템 장기실증 성능분석 연구)

  • Lee Sang-Nam;Kang Yong-Heack;Yu Chang-Kyun;Kim Jin-Soo
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.403-407
    • /
    • 2005
  • Objective of the research is to demonstrate solar thermal space and ground heating system which is integrated to a greenhouse culture facility for reducing heating cost, increasing the value of product by environment control, and developing advanced culture technology by deploying solar thermal system. Field test for the demonstration was carried out in horticulture complex in Jeju Island. Medium scale solar hot water system was installed in a ground heating culture facility. Reliability and economic aspect of the system which was operated complementary with thermal storage and solar hot water generation were analyzed by investigating collector efficiency, operation performance, and control features. Short term day test on element performance and Long term test of the whole system were carried out. Optimum operating condition and its characteristics were closely investigated by changing the control condition based on the temperature difference which is the most important operating parameter. For establishing more reliable and optimal design data regarding system scale and operation condition, continuous operation and monitoring on the system need to be further carried out. However, it is expected that, in high-insolation areas where large-scale ground storage is adaptable, solar system demonstrated in the research could be economically competitive and promisingly disseminate over various application areas.

  • PDF

Mechanism Improvement of the Heat Exchanger for the Thermal Efficiency Increase of Hot Air Heater (온풍난방기의 열효율 증대를 위한 열교환기 구조개선)

  • Kang, Geum-Choon;Kang, Yoen-Ku;Ryou, Young-Sun;Kim, Young-Joong;Lee, Si-Young;Paek, Yee
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.363-370
    • /
    • 2009
  • Hot air heater with light oil combustion is used as the most common heater for greenhouse heating in the winter season. Hot air heaters of 256,246 units have been supplied as main greenhouse heating equipment until 2008 and greenhouse heating cost has reached to 620 billions won in Korea. In order to improve the thermal efficiency of the hot air heater and to reduce the expenses for greenhouse heating, prototype hot air heater was manufactured and tested in this experiment. The heat exchanger of tested prototype hot air heater was circular and hexagonal pipe type and inline and stagger arrangement type. Capacity of the heating was 43,062 kJ/h and total heat transfer area of the heat exchanger was $10.728\;m^2$. According to the performance test, it could supply heat of 38,240 to 35,100 kJ/h depending on the fan motor speed of 1,740~1,220 rpm, respectively. Thermal efficiency of hot air heater was 87.0% to 80.8% in the same conditions. As a result, thermal efficiency of hot air heater with hexagonal pipe-stagger arrangement heat exchanger developed in this study was higher 10.2% than that of conventional hot air heater and heating energy saving rate of 14.3% increased.

Development of Semi-basement Type Greenhouse Model for Energy Saving

  • Kim, Seoung Hee;Joen, Jong Gil;Kwon, Jin Kyeong;Kim, Hyung Kweon
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.328-336
    • /
    • 2016
  • Purpose: The heat culture areas of greenhouses have been continuously increasing. In the face of international oil price fluctuations, development of energy saving technologies is becoming essential. To save energy, auxiliary heat source and thermal insulation technologies are being developed, but they lack cost-efficiency. The present study was conducted to save energy by developing a conceptually new semi-basement type greenhouse. Methods: A semi-basement type greenhouse, was designed and constructed in the form of a three quarter greenhouse as a basic structure, which is an advantageous structure to inflow sunlight. To evaluate the performance of the developed greenhouse, a similar structured general greenhouse was installed as a control plot, and heating tests were conducted under the same crop growth conditions. Results: Although shadows appeared during the winter in the semi-basement type greenhouse due to the underground drop, the results of crop growth tests indicated that there were no differences in crop growth and development between the semi-basement type greenhouse and the control greenhouse, indicating that the shadows did not affect the crop up to the height of the crop growing point. The amount of fuel used for heating from January to March was almost the same between the two greenhouses for tests. The heating load coefficients of the experimental greenhouses were calculated as $3.1kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the semi-basement type greenhouse and $2.9kcal/m^2{\cdot}^{\circ}C{\cdot}h$ for the control greenhouse. Since the value is lower than the double layer PE (polyethylene) film greenhouse value of $3.5kcal/m^2{\cdot}^{\circ}C{\cdot}h$ from a previous study, Tthe semi-basement type greenhouse seemed to have energy saving effects. Conclusions: The semi-basement type greenhouse could be operated with the same fuel consumption as general greenhouses, even though its underground portion resulted in a larger volume, indicating positive effects on energy saving and space utilization. It was identified that the heat losses could be reduced by installing a thermal curtain of multi-layered materials for heat insulation inside the greenhouse for the cultivation of horticultural products by installing thermal curtain of multi-layered materials for heat insulation inside the greenhouse, it was identified that the heat losses could be reduced.

EXHAUST GAS HEAT RECOVERY SYSTEM FOR PLANT BED HEATING IN GREENHOUSE PRODUCTION

  • Kim, Y.J.;Ryou, Y.S.;Rhee, K.J.;Kang, G.C.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.639-646
    • /
    • 2000
  • Hot air heater with light oil combustion is the most common heater for greenhouse heating in the winter season in Korea. However, since the heat efficiency of the heater is about 80%, considerable unused heat in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust gas heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The system consists of a heat exchanger made of copper pipes, ${\phi}\;12.7{\times}0.7t$ located inside the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tame The total heat exchanger area is $1.5m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to performance test it can recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690{\ell}$/hr from the waste heat discharged. The exhaust gas temperature left from the heat exchanger dropped to $100^{circ}C$ from $270^{circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{circ}C$ from $21^{circ}C$ at the water flow rate of $690{\ell}$/hr. And, the condensed water amount varies from 16 to $43m{\ell}$ at the same water circulation rates. This condensing heat recovery system can reduce boiler fuel consumption amount in a day by 34% according to the feasibility study of the actual mimitomato greenhouse. No combustion load was observed in the hot air heater.

  • PDF

Outside Temperature Prediction Based on Artificial Neural Network for Estimating the Heating Load in Greenhouse (인공신경망 기반 온실 외부 온도 예측을 통한 난방부하 추정)

  • Kim, Sang Yeob;Park, Kyoung Sub;Ryu, Keun Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.7 no.4
    • /
    • pp.129-134
    • /
    • 2018
  • Recently, the artificial neural network (ANN) model is a promising technique in the prediction, numerical control, robot control and pattern recognition. We predicted the outside temperature of greenhouse using ANN and utilized the model in greenhouse control. The performance of ANN model was evaluated and compared with multiple regression model(MRM) and support vector machine (SVM) model. The 10-fold cross validation was used as the evaluation method. In order to improve the prediction performance, the data reduction was performed by correlation analysis and new factor were extracted from measured data to improve the reliability of training data. The backpropagation algorithm was used for constructing ANN, multiple regression model was constructed by M5 method. And SVM model was constructed by epsilon-SVM method. As the result showed that the RMSE (Root Mean Squared Error) value of ANN, MRM and SVM were 0.9256, 1.8503 and 7.5521 respectively. In addition, by applying the prediction model to greenhouse heating load calculation, it can increase the income by reducing the energy cost in the greenhouse. The heating load of the experimented greenhouse was 3326.4kcal/h and the fuel consumption was estimated to be 453.8L as the total heating time is $10000^{\circ}C/h$. Therefore, data mining technology of ANN can be applied to various agricultural fields such as precise greenhouse control, cultivation techniques, and harvest prediction, thereby contributing to the development of smart agriculture.

The Energy and Environmental Performance of Hydrogen Fuel Cell System in Apartment Complex (공동주택 단지 적용 수소연료전지 시스템의 에너지 및 환경 성능 평가)

  • Kim, Yong-Hee;Kim, Hae-Jung;Ko, Myeong-Jin;Kim, Yong-Shik
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.199-204
    • /
    • 2009
  • This study analyzed the central heating system and the cogeneration system among the methods of supplying energy which have application to the Hydrogen Fuel Cell system and apartment complexes for performance evaluations. Therefore, a feasibility study on the first application of this system in an apartment complexes was considered to evaluate the energy performance by the amount of fuel consumed by the system using Hydrogen Fuel Cell energy and environmental performance by the amount of greenhouse gas emissions. As a result, the Hydrogen Fuel Cell system consumes 83% of fuel while the cogeneration system consumes 81% of fuel comparison to conventional central heating system. The Hydrogen Fuel Cell and the cogeneration system produce 73%t and 70% of greenhouse gas emissions in comparison to conventional central heating system.

  • PDF

Heat Recovery Characteristics of the Hot Water Supply System with Exhaust Heat Recovery Unit Attached to the Hot Air Heater for Plant Bed Heating in the Greenhouse (온풍난방기의 배기열을 이용한 지중 난방용 온수공급시스템의 열회수특성)

  • 김영중;유영선;장진택;강금춘;이건중;신정웅
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.221-226
    • /
    • 2000
  • Hot air heater with light oil burner is the most common heater for greenhouse heating in the winter season in Korea. However, since the thermal efficiency of the heater is about 80∼85%, considerable unused heat amount in the form of exhaust gas heat discharges to atmosphere. In order to capture this exhaust heat a heat recovery system for plant bed heating in the greenhouse was built and tested in the hot air heating system of greenhouse. The heat recovery system is made for plant bed or soil heating in the greenhouse. The system consisted of a heat exchanger made of copper pipes, ${\Phi}12.7{\times}0.7t$ located in the rectangular column of $330{\times}330{\times}900mm$, a water circulation pump, circulation plastic pipe and a water tank. The total heat exchanger area is 1.5$m^2$, calculated considering the heat exchange amount between flue gas and water circulated in the copper pipes. The system was attached to the exhaust gas path. The heat recovery system was designed as to even recapture the latent heat of flue gas when exposing to low temperature water in the heat exchanger. According to the performance test it could recover 45,200 to 51,000kJ/hr depending on the water circulation rates of 330 to $690\ell$/hr from the waste heat discharged. The exhaust gas temperature left the heat exchanger dropped to $100^{\circ}C$ from $270^{\circ}C$ by the heat exchange between the water and the flue gas, while water gained the difference and temperature increased to $38^{\circ}C$ from $21^{\circ}C$ at the water flow rate of $690\ell$/hr. By the feasibility test conducted in the greenhouse, the system did not encounter any difficulty in operations. And, the system could recover 220,235kJ of exhaust gas heat in a day, which is equivalent of 34% of the fuel consumption by the water boiler for plant bed heating of 0.2ha in the greenhouse.

  • PDF

Economic Evaluation of Glass Greenhouse Heating Solar Thermal System Applied with Seasonal Borehole Thermal Energy Storage System (BTES 방식의 계간축열 시스템을 적용한 유리온실의 난방용 태양열시스템의 경제성 평가)

  • Park, Sang-Mi;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.5
    • /
    • pp.63-74
    • /
    • 2018
  • The heating performance of a solar thermal seasonal storage system applied to a 1,320 m2 glass greenhouse was analyzed numerically, and the economic feasibility depending upon the number of boreholes was evaluated. For this study, the gardening 16th and 19th zucchini greenhouse of Jeollanam-do agricultural research & extension services was selected. And the heating load of the glass greenhouse selected was 1,147 GJ. BTES(Borehole Thermal Energy Storage) was considered as a seasonal storage, which is relatively economical. The number of boreholes was selected from 25 to 150. The TRNSYS was used to predict and analyze the dynamic performance of the solar thermal system. Numerical simulation was performed by modelling the solar thermal seasonal storage system consisting of flat plate solar collector, BTES system, short-term storage tank, boiler, heat exchanger, pump and controller. As a result of the analysis, when the number of boreholes was from 25 to 50, the thermal efficiency of BTES system and the solar fraction was the highest. When the number of boreholes was from 25 to 50, it was analyzed that the payback period was from 5.2 years to 6.2 years. Therefore it was judged to be the number of boreholes of the proposed system was from 25 to 50, which is the most efficient and economical.

The Effects of Water Flow Rates on the Performance of a Capillary Tube Solar Collector for Greenhouse Heating (온실 난방을 위한 모세관형 태양열 집열기의 성능에 미치는 유량의 효과에 관한 연구)

  • 유영선;장유섭;홍성기;윤진하;정두호;강영덕
    • Journal of Bio-Environment Control
    • /
    • v.5 no.1
    • /
    • pp.57-64
    • /
    • 1996
  • To use effectively the solar energy in greenhouse heating, a high performance solar collector should be developed. And then the size of the solar collector and thermal storage tank should be determined through the calculation of heating load. The solar collector must be set in the optimum tilt angle and direction to take daily solar radiation maximally, and the flow rate of heat transfer fluid through the solar collector should be kept in the optimum range. In this research, the performance tests of a capillary tube solar collector were performed to determine the optimum water flow rate and the results summarized as follows. 1. The regressive equations for efficiency estimations of the capillary tube solar collector in the open loop were modeled in the water flow rate of 700-l,000 $\ell$/hr. 2. The optimum water flow rate of the solar collector was estimated by the second order polynomial regression and the maximum efficiency was 80% at the water flow rate of 850 $\ell$/hr. 3. The solar thermal storage system consisted of a capillary tube solar collector and a water storage tank was tested at the water flow rate of 850 $\ell$/hr in the closed loop, and obtained the solar thermal storage efficiency of 55.2%. 4. As the capillary tube solar collector engaged in this experiment was made of non-corrosive polyolefin tubes, its weight was as light as 1/30 of the flat plate solar collector made of copper tubes. Therefore it was considered to be suitable for the greenhouse heating system.

  • PDF

Development of Thermal Storage System in Plastic Greenhouse(II) -Thermal performance of solar greenhouse system for hydroponic culture- (플라스틱 온실(溫室)의 열저장(熱貯藏) 시스템의 개발(開發)에 관(關)한 연구(硏究)(II) -수경재배용(水耕栽培用) 태양열(太陽熱) 온실(溫室) 시스템의 열적(熱的) 성능(性能)-)

  • Kim, Y.H.;Koh, H.K.;Kim, M.K.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.123-133
    • /
    • 1990
  • Thermal performance of a solar heating plastic greenhouse designed for a hydroponic system was studied. The system was constructed with the air-water heat exchanger and thermal storage tank that were combined with hydroponic water beds. Experiments were carried out to investigate the daily average heat stored and released in thermal storage tank, average solar energy collection efficiency, average coefficient of performance, average oil reduction factor of thermal storage system, and the heat transfer coefficient during the nighttime in plastic greenhouse. The results obtained in the present study are summarized as follows. 1. Daily average heat stored in thermal storage tank and released from the thermal storage tank was 1,259 and $797KJ/m^2$ day, respectively. 2. The average solar energy collection efficiency of thermal storage tank was 0.125 during the experiment period. And the average coefficient of performance of thermal storage system in plastic greenhouse was 3.6. 3. The average oil reduction factor of thermal storage system and the heat transfer coefficient during the nighttime in plastic greenhouse were found to be 0.52 and $4.3W/m^2\;hr\;^{\circ}C$, respectively.

  • PDF