• Title/Summary/Keyword: greenhouse gas reduction

Search Result 652, Processing Time 0.023 seconds

Capture and Reduction Technology of Greenhouse Gas Using Membrane from Anaerobic Digester Gas (분리막을 이용한 혐기성 소화가스로부터 온실가스 회수저감 기술)

  • Hwang, Cheol-Won;Jeong, Chang-Hun
    • Journal of Environmental Science International
    • /
    • v.20 no.10
    • /
    • pp.1233-1241
    • /
    • 2011
  • The main objective of this experimental investigation was $CH_4$ recovery from biogas generated in municipal and wastewater treatment plant. The polysulfone hollow fiber membrane was prepared in order to investigate the permeation properties of $CH_4$ and $CO_2$. Permeability of $CO_2$ in Polysulfone membrane was 11-fold higher than of $CH_4$ gas. A membrane pilot plant for upgrading biogas was constructed and operated at a municipal wastewater treatment plant. The raw biogas contained 66 ~ 68 Vol % $CH_4$, the balance being mainly $CO_2$. The effect of the operating pressure of feed and permeate side and feed flowrate on $CH_4$ recovery concentration and efficiency were investigated with double stage membrane pilot plant. The $CH_4$ concentration in the retentate stream was raised in these tests to 93 Vol % $CH_4$.

The Effect of Energy-Saving Investment on Reduction of Greenhouse Gas Emissions (에너지절약투자의 온실가스 배출 감소 효과)

  • Kim, Hyeon;Jeong, Kyeong-Soo
    • Environmental and Resource Economics Review
    • /
    • v.9 no.5
    • /
    • pp.925-945
    • /
    • 2000
  • This paper analyses the impact of energy-saving investment on Greenhouse gas emissions using a model of energy demand in Korea. SUR method was employed to estimate the demand equation. The econometric estimates provide information about the energy price divisia index, sector income, and energy saving-investment elasticities of energy demand. Except for energy price divisia, the elasticities of each variable are statistically significant. Also, the price and substitution elasticities of each energy price are similar to the results reported by the previous studies. The energy-saving investment is statistically significant and elasticities of each sector is inelastic. Using the coefficient of energy-saving investment and carbon transmission coefficient, the amount of reduction of energy demand and the reduction of carbon emissions can be estimated. The simulation is performed with the scenario that the energy-saving investment increase by 10~50%, keeping up with Equipment Investment Plan of 30% increase in energy-saving investment by 2000. The results show that the reduction of energy demand measured as 11.2% based upon 1995's level of the energy demand, in industrial sector. Accordingly, the carbon emissions will be reduced by 11.3% based upon 1995's level of the carbon emissions in industrial sector.

  • PDF

A Study on Analysis and Assessment of the LCCO2 Emissions for Building Construction by Using the Life Cycle Assessment Methodology (전과정평가 방법론을 이용한 건물의 전과정 탄소 배출량 평가 및 분석에 관한 연구)

  • Cho, Su-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.259-260
    • /
    • 2016
  • Recently, world-wide focusing on the interest for the reduction of greenhouse gas emissions associated with climate change and global warming, South Korea also has set up a national greenhouse gas reduction target and action plans seeking to achieve them. In particular, in the construction area, to encourage green building certification of the building and carbon labeling acquisition of building products, in order to reduce the environmental impact caused by the industrial activities have been in steady efforts. Therefore, this study estimates the life cycle carbon footprint of building construction materials applied to carbon emissions reduction technology and analyzes the results. Through the CO2 emissions analysis in construction phase and maintenance phase of the building, it provides basic resource for future research expansion and establishes a step-by-step whole life cycle carbon emissions reduction plan in new construction and existing buildings.

  • PDF

Study on CO2 Emission Reduction Effects of Using Waste Cementitious Powder as an Alternative Raw Material

  • Park, Dong-Cheon;Kwon, Eun-Hee;Hwang, Jong-Uk;Ahn, Jae-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.187-194
    • /
    • 2014
  • With environmental regulations continuously being strengthened internationally the need to control environmental pollution and environmental load is emerging in Korea. The purpose of this study is to seek methods or using waste cementitious powder as an alternative raw material for limestone through the optimization of raw material and to quantitatively analyze the resulting reduction of $CO_2$ emission in order to contribute to solving the issue of waste, which is the biggest issue in relation to construction and global warming. The results of the study, show that waste cementitious powder can be used as an alternative raw material for limestone at OPC level, but it was also found that mixing fine aggregate cementitious powder into waste cementitious powder significantly affected the substitution rate for limestone with waste cementitious powder and the reduction of greenhouse gas. In particular, when fine aggregate cementitious powder was used at a rate of 0~20%, the substitution rate for limestone and the reduction in the rate of greenhouse gas emission was significantly reduced. It is thought that a technique to efficiently separate and discharge the fine aggregate cementitious powder mixed in waste cementitious powder needs to be developed in the future.

Analysis of GHG Reduction Scenarios on Building using the LEAP Model - Seoul Main Customs Building Demonstration Project - (LEAP 모형을 이용한 건축물의 온실가스 감축 시나리오 분석 - 서울세관건물 그린리모델링 시범사업을 중심으로 -)

  • Yoon, Young Joong;Kim, Min Wook;Han, Jun;Jeon, Eui Chan
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.341-349
    • /
    • 2016
  • This study is intended to set a greenhouse gas emission scenario based on green remodeling pilot project (Annex building of Seoul Customs Office) using LEAP model, a long-term energy plan analysis model, to calculate the energy saving and greenhouse gas emission till year 2035 as well as to analyze the effect of electric power saving cost. Total 4 scenarios were made, Baseline scenario, assuming the past trend is to be maintained in the future, green remodeling scenario, reflecting actual green remodeling project of Seoul Customs Office, behavior improvement and renewable energy supply, and Total scenario. According to the analysis result, the energy demand in 2035 of Baseline scenario was 6.1% decreased from base year 2013, that of green remodeling scenario was 17.5%, that of behavior improvement and renewable energy supply scenario was 21.1% and that of total scenario was 27.3%. The greenhouse emission of base year 2013 was $878.2tCO_2eq$, and it was expected $826.3tCO_2eq$, approx. 5.9% reduced, in 2035 by Baseline scenario. the cumulative greenhouse gas emission saving of the analyzing period were $-26.5tCO_2eq$ by green remodeling scenario, $2.8k\;tCO_2eq$ by behavior improvement and renewable energy supply scenario, and $2.0k\;tCO_2eq$ by total scenario. In addition the effect of electricity saving cost through energy saving has been estimated, and it was approx. 634 million won by green remodeling scenario and appro. 726 million won by behavior improvement and renewable energy supply scenario. So it is analyzed that of behavior improvement and renewable energy supply scenario would be approx. 12.7% higher than that of green remodeling scenario.

Evaluating Water Supply Capacity of Embankment Raised Reservoir on Climate Change (기후변화에 따른 둑높임 저수지의 용수공급능력 평가)

  • Lee, Jaenam;Noh, Jaekyoung
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • An embankment raising project on 113 agricultural reservoirs in Korea was implemented in 2009 to increase water supply capacity for agricultural water and instream uses. This study evaluated the future water supply capacity of the Imgo reservoir at which the agricultural reservoir embankment raising project was completed, considering climate change scenarios. The height of the embankment of the reservoir was increased by 4.5 m, thereby increasing its total storage from 1,657.0 thousand to 3,179.5 thousand cubic meters. To simulate the reservoir water storage with respect to climate changes, two climate change scenarios, namely, RCP 4.5 and RCP 8.5 (in which greenhouse gas reduction policy was executed and not executed, respectively) were applied with bias correction for reflecting the climate characteristics of the target basin. The analysis result of the agricultural water supply capacity in the future, after the agricultural reservoir embankment raising project is implemented, revealed that the water supply reliability and the agricultural water supply increased, regardless of the climate change scenarios. By simulating the reservoir water storage considering the instream flow post completion of the embankment raising project, it was found that water shortage in the reservoir in the future is not likely to occur when it is supplied with an appropriate instream flow. The range of instream flow tends to decrease over time under RCP 8.5, in which the greenhouse gas reduction policy was not executed, and the restoration of reservoir storage was lower in this scenario than in RCP 4.5, in which greenhouse gas reduction policy was executed.

Stepwise Technique for Improving Building Energy Efficiency Rating Utilizing Quantified Simulation Model (정량화 시뮬레이션 모델을 활용한 단계적인 건축물에너지효율등급 향상 방안)

  • Kim, Gi-Seok;Kim, You-Min;Kim, Jong-Seung;Oh, Se-Gyu
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.65-73
    • /
    • 2014
  • Due to the Climate change and resource shortage by global warming, various problems are rising and getting worse around the world. Many countries are doing the considerable efforts to reduce greenhouse gas emissions. The government of South Korea also plans to decrease greenhouse gas emission, the various pilot projects are underway, which includes obligation of energy efficiency 1st rating and greenhouse gas target management system of public buildings. In particular, luxurious government office buildings and energy-wasting public building have issued and emerged as a social problem. Energy efficiency improvement of the existing public office buildings are becoming an important issue recently. This study is proposed the step-by-step energy improvement model according to the building energy efficiency rate in order to reduce the energy consumption. To attain this end, I set up a base model by analyzing the current architectural conditions of the existing public office buildings and grasped the specific properties of building energy consumption through energy simulations. Furthermore, I suggested phased reduction prototypes for the reduction target of energy consumption by applying the methods of the zero energy building plan. This study is expecting that prototypes would give directions when it comes to planning the implementation policy of phased building plan factors, according the building energy consumption reduction goal in the existing public office buildings which are the subject of building energy target management system.

Economic Effects Analysis for Passenger Car's Idle Stop and Go Strategy: Focusing on Seoul Metropolitan Area (승용차 공회전제한장치 장착전략의 경제효과분석: 수도권 지역을 대상으로)

  • Lee, Kyu Jin;Jang, Jeong Ah;Choi, Keechoo;Shim, Sang Woo
    • Journal of Korean Society of Transportation
    • /
    • v.32 no.5
    • /
    • pp.421-430
    • /
    • 2014
  • The greenhouse gas emission generated by idling vehicles is a critical issue in the greenhouse gas reduction from the transportation sector. Recently, the mandatory application of the Idle Stop and Go (ISG) for buses, trucks and taxis is in the process of legislation. Focusing on the regulation is about to apply to passenger cars, this study analyzed the quantitative economic effects of the ISG installation by passenger car types in Seoul metropolitan area to support proper policy making. The benefit cost ratio of ISG installation on commercial passenger car of Seoul is the most effective, calculated as 8.55. Accordingly, the amount of 660 liters (per year per vehicle) of fuel and 1,606 kg (per year per vehicle) of $CO_2$ could be reduced. The results of this study might be used as an index for judgment of policy such as determining appropriate subsidy for ISG installation on passenger cars.

Annual Greenhouse Gas Removal Estimates of Grassland Soil in Korea

  • Lee, Sang Hack;Park, Hyung Soo;Kim, Young-Jin;Kim, Won Ho;Sung, Jung Jong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.35 no.3
    • /
    • pp.251-256
    • /
    • 2015
  • The study was conducted to determine greenhouse gas (GHG) inventories in grasslands. After 'Low Carbon Green Growth' was declared a national vision on 2008, Medium-term greenhouse gas reduction was anticipated for 30% reduction compared to Business As Usual (BAU) by 2020. To achieve the reduction targets and prepare to enforce emissions trading (2015), national GHG inventories were measured based on the 1996 Intergovernmental Panel on Climate Change Guidelines (IPCC GL). The national Inventory Report (NIR) of Korea is published every year. Grassland sector measurement was officially added in 2014. GHG removal of grassland soil was measured from 1990 to 2012. Grassland area data of Korea was used for farmland area data in the "Cadastral Statistical Annual Report (1976~2012)". Annual grassland area corresponding to the soil classification was used "Soil classification and commentary in Korea (2011)". Grassland area was divided into 'Grassland remaining Grassland' and 'Land converted to Grassland'. The accumulated variation coefficient was assumed to be the same without time series changes in grassland remaining grassland. Therefore, GHG removal of soil carbon was calculated as zero (0) in grassland remaining grassland. Since the grassland area increases constantly, the grassland soil sinks constantly . However, the land converted to grassland area continued to decrease and GHG removal of soil carbon was reduced. In 2012 (127.35Gg $CO_2$), this removal decreased by 76% compared to 1990 (535.71 Gg $CO_2$). GHG sinks are only grasslands and woodlands. The GHG removaled in grasslands was very small, accounting for 0.2% of the total. However, the study provides value by identifying grasslands as GHG sinks along with forests.