• Title/Summary/Keyword: green slope

Search Result 158, Processing Time 0.02 seconds

Design and Construction of Green Slope Fabric Form on Cutting Slope (절토사면의 Nailing 보강 Fabric Form의 설계와 시공)

  • 송재헌;최영근
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.09a
    • /
    • pp.81-92
    • /
    • 2000
  • Green Slope(F.F.R : Fabric Form Reinforcement Method) is one of an environmental slope protection method at steep cutting sites. This method is that soil and rock at the steep slope is fixed using the environmental Fabric Form, Nail, Rock Bolt and Rock Anchor, And then, the surfaces covered with grasses or weeds. This method will be satisfied both safe slope protection and natural environment appearance. Green Slope is a useful method of the construction sites of steep cutting slopes.

  • PDF

Evaluation of Durability and Slope Stability of Green Soil using Cementitious Materials (시멘트 계 재료를 사용한 녹생토의 내구성 및 사면 안정성 평가)

  • Kim, Il-Sun;Choi, Yoon-Suk;Yang, Eun-Ik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.45-53
    • /
    • 2018
  • Among the various slope stabilization methods, the green soil method based on the growth of plants is advantageous to the environment, but the durability and slope stability are insufficient when the green soil method is applied to a steep slope and rock slope sites. Therefore, in this study, green soil, which improved the adhesion performance and the vegetation environment, was developed using cementitious materials and ECG, and the durability and slope stability as well as the possibility of its use as a rock vegetation base material were assessed. From the results, the adhesive force and internal friction angle were higher than that of the existing green soil so that it could be used for in situ construction. The soil hardness value was 26 mm, which was slightly higher than that of the best growth condition of the plant, 18~23 mm, and the drying shrinkage strain was approximately 3%; hence, it is not expected to affect the durability of green soil. The results of a rainfall intensity simulation for evaluating the slope adhesion force showed that slope failure did not occur under all conditions. The damage decreased with increasing slope angle. Therefore, the green soils developed in this study have excellent durability and slope stability and can be used for rock slope sites.

Golf Green Slope Estimation Using a Cross Laser Structured Light System and an Accelerometer

  • Pham, Duy Duong;Dang, Quoc Khanh;Suh, Young Soo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.508-518
    • /
    • 2016
  • In this paper, we propose a method combining an accelerometer with a cross structured light system to estimate the golf green slope. The cross-line laser provides two laser planes whose functions are computed with respect to the camera coordinate frame using a least square optimization. By capturing the projections of the cross-line laser on the golf slope in a static pose using a camera, two 3D curves’ functions are approximated as high order polynomials corresponding to the camera coordinate frame. Curves’ functions are then expressed in the world coordinate frame utilizing a rotation matrix that is estimated based on the accelerometer’s output. The curves provide some important information of the green such as the height and the slope’s angle. The curves estimation accuracy is verified via some experiments which use OptiTrack camera system as a ground-truth reference.

Vegetation Effects and Properties on Green Soil Blended with Cement-Based Materials for Slope Stability (시멘트 기반 재료를 혼합한 사면 안정용 녹생토의 물성 및 식생 영향성)

  • Choi, Yoon-Suk;Kim, Joo-Hyung;Cho, Young-Keun;Kim, Ho-Kyu;Park, Ok-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.2
    • /
    • pp.117-126
    • /
    • 2021
  • An experimental study was carried out to investigate the applicability of cement-based materials for green soil which is a soil for promoting plant growth. The results show that the shear strength of the green soil mixed with gypsum cement (No.3) was low, but the hardness (23.6mm) and pH value (7.4) was most suitable for the vegetation environment. In addition, the initial vegetation germination of green soil, which improved performance by adding a moisturizer, was slower than that of general green soil, and the conductivity value tended to be slightly higher. On the other hand, the slope adhesion of advanced green soil was high, and it was found that the plant growth rate and the regeneration capacity were superior after time passed.

Evaluation of Air Ion According to Vegetation Types in Valleys and Slopes - Focused on Tangeumdae Park in ChungJu - (계곡·사면부의 식생유형에 따른 공기이온 평가 - 충주시 탄금대 공원을 대상으로 -)

  • Yoon, Young-Han;Lee, Sang-Hoon;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.29 no.5
    • /
    • pp.519-529
    • /
    • 2020
  • The purpose of this study was to provide basic health care data for the climate aspects of park re-cultivation by evaluating air ions according to the type of vegetation in the valley and upper slopes of the mountain park. Simple negative or positive air ions were expected to show the same tendencies, so they were analyzed in terms of correcting the air ion index. By analyzing the air ions according to the topography, it was found that valley > slope in terms of the air ion index. When analyzing air ions according to tree species, we found that evergreen conifers in the valley > the deciduous broad-leaved trees in the valley > the evergreen conifers in the slope = the deciduous broad-leaved trees in the slope. For DBH(Diameter at breast height), the valley large pole > slope large pole > slope medium hard wood, while crown density was analyzed as valley dense > slope dense> valley proper > slope proper. Layered structure analysis showed that the multi-layer structure of the valley > multi-layer structure of the slope = the single-layer structure of the valley > the single-layer structure of the slope. The correlation coefficient was determined according to vegetation type and air ion index in the order of DBH > crown density > layer structure > geomorphic structure. In this study, limits exist except for ridge line, valley, and slopes in urban mountain parks. Therefore, analysis should be made considering both topographical structure and various vegetation types in future studies of air ions.

A Study on the Characteristics of Green Design and Construction of Golf Courses in Korea (한국의 골프 코스 그린의 설계 및 시공 특성에 관한 연구)

  • 이상재;허근영
    • Asian Journal of Turfgrass Science
    • /
    • v.13 no.4
    • /
    • pp.181-190
    • /
    • 1999
  • This study was carried out to survey green system, area, green slope, green turfgrass variety, green section, and particle size of green construction materials, and to investigate and evaluate the characteristics of Design and Construction in Korean golf course green for improving the quality of Korean golf course into that of the international golf course held international tournament. The results were as follows. 1. The greens of 129 Korean golf courses consisted of 2(two) green system and 1(one) green system. 2(two) green system was 50.8%, 1(one) green system was 40.7%, and 1+2 green system was 8.5% of them. 2. In 48 Korean golf courses, the green area of 2(two) green system was mostly 400~$600\m^2$(56.5%) and the green area of 1(one) green system was mostly 600~$800\m^2$(47.8%). In 48 Korean golf courses, 1.5~3% green slope appeared the highest frequency(50.0%) and the next was 3~5%(29.4%). 3. Penncross variety was the highest frequency(71.2%). The next was mixed variety (Penncross+Crenshaw, Penn A-1, Pennlinks, or Penneagle/SR 1020+SR 1019) and the frequency of mixed variety was 7.6%. 4. In 48 Korean golf courses, 70~80cm total thickness of green appeared the highest frequency(36.1%), 10~20cm thickness of green mixed sandy layer appeared the highest frequency(43.6%), and 10~20cm thickness of green coarse sandy layer appeared the highest frequency(55.6%). 0~10cm thickness of green gravel layer appeared the highest frequency(67.6%), 20~30cm thickness of green drain layer appeared the highest frequency(52.8%), and 20~30cm width of green drain layer appeared the highest frequency(44.4%). Below 1mm sand diameter used in green mixed sandy layer appeared the highest frequency(46.2%), below 2mm or over 2mm sand diameter used in green coarse sandy layer appeared the highest frequency(31.4%). 20~40mm coarse gravel diameter used in green gravel layer appeared the highest frequency(43.2%) and 0~20mm fine gravel diameter used in green gravel layer appeared the highest frequency(65.8%). 20~40mm gravel diameter used in green drain layer appeared the highest frequency(64.1%).

  • PDF

Comparative Analysis of Anion Concentration by the Type of Roadside Buffer Green (가로변 완충녹지의 조성유형에 따른 음이온 농도 비교 분석)

  • Yoon, Yong-Han;Joo, Chang-Hun;Park, Hun;Kim, Jeong-Ho
    • Journal of Environmental Science International
    • /
    • v.23 no.7
    • /
    • pp.1339-1347
    • /
    • 2014
  • This study were performed on roadside buffer green in Songpa-dong, Songpa-gu, Seoul in order to analyze the anion concentration according to the type of composition of roadside buffer green. Buffer green separating the physical structure of the measurement points and measurement locations were separated by roadside, green interior, the other side of the road. planting density and deposit of trees per each buffer green was measured in the order of mounding type> slope type> the plain type. If the measured temperature of the location-specific weather elements roadside> inside> the other side of the road in order of measurement and the temperature is lowered farther away from the road. If the relative humidity of the road on the other side> inside> the roadside in order to measure and this is the opposite of the temperature tendency. According to physical structure reduction of the temperature on the other side of the road and roadside in order of mounding type> the plain type> slope type was measured. As a result of measuring a anion therefore concentration of the anion inside of melt is in order of mounding type> the plain type> slope type, tended to match the melt characteristics. According to measured positions anion concentration is in the order of the other side of the road> inside> the roadside was measured. As a result of correlation analysis, in the case of measurement location-specific weather and anions the temperature is positive correlation, relative humidity is negative correlation and that's results of previous studies were supported.

Probabilistic Stability Analysis of Unsaturated Soil Slope under Rainfall Infiltration (강우침투에 대한 불포화 토사사면의 확률론적 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.37-51
    • /
    • 2018
  • The slope failure due to the rainfall infiltration occurs frequently in Korea, since the depth of the weathered residual soil layer is shallow in mountainous region. Depth of the failure surface is shallow and tends to pass near the interface between impermeable bedrock and soil layer. Soil parameters that have a significant impact on the instability of unsaturated slopes due to rainfall infiltration inevitably include large uncertainties. Therefore, this study proposes a probabilistic analysis procedure by Monte Carlo Simulation which considers the hydraulic characteristics and strength characteristics of soil as random variables in order to predict slope failure due to rainfall infiltration. The Green-Ampt infiltration model was modified to reflect the boundary conditions on the slope surface according to the rainfall intensity and the boundary condition of the shallow impermeable bedrock was introduced to predict the stability of unsaturated soil slope with shallow bedrock under constant rainfall intensity. The results of infiltration analysis were used as inputs of infinite slope analysis to calculate the safety factor. The proposed analysis method can be used to calculate the time-dependent failure probability of soil slope due to rainfall infiltration.

Evaluation of Noise Decreasing Effects by Structures in Roadside Buffer Green (도로변 완충녹지 구조에 따른 소음저감효과 평가)

  • Kim, Jeong-Ho;Oh, Deuk-Kyun;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.24 no.5
    • /
    • pp.647-655
    • /
    • 2015
  • In this study, to targeting Songpa of Seoul, were analyzed the effect on the noise mitigation in roadside buffer green spaces. Noise of Songpa Street buffer green space was determined to be higher during the day than at night. In addition, it was most of 60 db or more. However, the noise reduction function of the buffer green was not greatly affected by time. In the case of noise reduction rate, during the day time it was the order of the mounding type (18.14%)> plain type (5.73%)> slope type (4.08%), And, in the case of night time, it was the order of the mounding type (11.29%)> slope type (10.22%)> plain type (4.42%). Noise reduction rate, all of the daytime, was the highest in the mounding type. As a result of the factors on the amount of reduction of noise, More physical structure is mounding type, green structure is the stratification of green space, and the number of individuals is large, the higher the tree planting density, it is determined that the noise reduction effect is high. Also, factors affecting the noise reduction effect of the day and night were different.

A Study of Stability Analysis on Unsaturated Weathered Slopes Based on Rainfall-induced Wetting (강우시 습윤에 의한 불포화 풍화토의 사면 안정 해석 연구)

  • 김재홍;박성완;정상섭;유지형
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.2
    • /
    • pp.123-136
    • /
    • 2002
  • The infiltration of prolonged rainfall causes shallow slope failures on surficial slopes. Experiments performed on soil-water characteristic curves in weathered soils of three different types(SW, SP, SM) were used to construct a general equation for the soil-water characteristic curve. Based on this, the saturated depth by Green & Ampt model was compared with the results of numerical analyses and the range of application of Green & Ampt model was evaluated. It was found that the saturated depth occurred by infiltration on the surface of slopes has an inf1uence on the surficial stability of slopes md, the stability analysis of unsaturated soils calculated by using the soil-water characteristic curve of weathered soils was found to be a proper analysis for shallow slope failures due to rainfall.