• Title/Summary/Keyword: green retrofit

Search Result 14, Processing Time 0.023 seconds

Multi-alternative Retrofit Modelling and its Application to Korean Generation Capacity Expansion Planning (발전설비확장계획에서 다중대안 리트로핏 모형화 방안 및 사례연구)

  • Chung, Yong Joo
    • The Journal of Information Systems
    • /
    • v.29 no.1
    • /
    • pp.75-91
    • /
    • 2020
  • Purpose Retrofit, defined to be addition of new technologies or features to the old system to increase efficiency or to abate GHG emissions, is considered as an important alternative for the old coal-fired power plant. The purpose of this study is to propose mathematical method to model multiple alternative retrofit in Generation Capacity Expansion Planning(GCEP) problem, and to get insight to the retrofit patterns from realistic case studies. Design/methodology/approach This study made a multi-alternative retrofit GECP model by adopting some new variables and equations to the existing GECP model. Added variables and equations are to ensure the retrofit feature that the life time of retrofitted plant is the remaining life time of the old power plant. We formulated such that multiple retrofit alternatives are simultaneously compared and the best retrofit alternative can be selected. And we found that old approach to model retrofit has a problem that old plant with long remaining life time is retrofitted earlier than the one with short remaining life time, fixed the problem by some constraints with some binary variables. Therefore, the proposed model is formulated into a mixed binary programming problem, and coded and run using the GAMS/cplex. Findings According to the empirical analysis result, we found that approach to model the multiple alternative retrofit proposed in this study is comparing simultaneously multiple retrofit alternatives and select the best retrofit satisfying the retrofit features related to the life time. And we found that retrofit order problem is cleared. In addition, the model is expected to be very useful in evaluating and developing the national policies concerning coal-fired power plant retrofit.

An Analysis of the Energy Saving Effect Through the Retrofit and the Optimal Operation for HVAC Systems (공조설비 운전방법 및 시설개선을 통한 에너지절약 효과분석)

  • Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.4
    • /
    • pp.343-350
    • /
    • 2012
  • The major goal of building energy management is to minimize the energy consumption while maintaining the comfortable environment condition. Nowadays building energy management to save HVAC energy and so on is the most critical issue for existing building service branch with high efficiency equipments and their optimal operation. The effects on the building energy savings of the building equipment retrofit and the improvement of its operation method, especially in the field of HVAC system, were analyzed in this study for domestic small and/or medium sized buildings. Over 8.8% of energy saving was achieved compared withe total energy consumption in commercial building. These results could be used for reasonable maintenance and efficient management of the various building service equipments and related systems.

Energy Saving Effect and Improvement of Indoor Thermal Environment through the Window Retrofit (창호 리트로피트를 통한 에너지 절감 및 실내 열환경 개선 효과 분석에 관한 연구)

  • Jeong, Jin-Woo;Ju, Jung-Hoon;Cho, Dong-Woo
    • Journal of the Korean Solar Energy Society
    • /
    • v.38 no.3
    • /
    • pp.29-36
    • /
    • 2018
  • The goal of this study is to retrofit the windows of residential buildings and to activate the green remodeling by verifying energy saving and indoor thermal environment. As a result of analysis of the energy saving effect of 458 units window retrofits, it was possible to reduce the energy requirement by 48.20% ~ 54.97%. According to the improvement on indoor environment, it was possible to operate by reducing heating temperature and supply time. The actual gas consumption of the heating period was reduced by 25% compared with that of the window retarder to save 28,968 thousand won of heating energy cost. Resident's satisfaction surveys were conducted one year after window retrofit. More than 80% of the respondents answered that they satisfied the improvement on window performance, indoor thermal environment and indoor sound environment. As a result, we verified the energy saving effect and the improvement on the indoor environment through window retrofits.

Feasibility Study on Retrofitting Lighting and Heat Source Equipments in Office Buildings (사무소건물 조명기기와 열원기기의 고효율기기로의 교체에 관한 경제성 검토)

  • Lee, Chul-goo;Kim, Jong-dae;Im, Tae-soon
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.12 no.2
    • /
    • pp.13-18
    • /
    • 2016
  • Energy saving has been main concern, thus government supporting policies which are based on Fundamentals of Low-carbon Green Growth Act', 'Green Building Support Act, have been prepared in Korea. The objective of this study is to estimate energy conservation effectiveness and economic advantage assuming that lighting equipments and heat source equipments would be retrofitted. Office building, which has total floor area of $30,000m^2$, was a subject of this study. From the estimations, electric rate will be decreased by 62,886,000 won per year due to lighting equipments retrofit, and gas rate will be decreased 11,141,000 won or 17,332,000 won per year due to heat source equipments retrofit (in case of COP 1.2 or 1.5). Payback period of each case that are calculated by energy saving cost and retrofit cost are estimated 27.9 year, 38.6 year and 29.2 year, thus economic supporting policies is necessary for effective energy saving in buildings. Meanwhile payback period of heat source equipment for new building is estimated 6.1 year and 8.3 year.

A strategic framework for green remodeling based on children's health and energy efficiency in South Korea (한국의 어린이 건강과 에너지 효율성을 기반으로 한 친환경 리모델링을 위한 우선순위 전략 프레임워크)

  • Nguyen, Thi Vi-Anh;Ahn, Yong-Han
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.11a
    • /
    • pp.61-62
    • /
    • 2023
  • Promoting energy-efficient retrofit of existing buildings to achieve carbon neutrality by 2050 is critically vital and challenging. The bulk of outdated educational buildings in particular are of grave concern since they are not only have a significant negative impact on the environment but also dangerous to inhabitants'health. This study laid the groundwork for understanding the connection between occupant health and energy efficiency. This study proposes a prioritized strategic GR framework in South Korea's aging preschools. The possible prospects and levels of development in the GR plan are identified by this evaluation. Policy markers, educators, and other key stakeholders may help to create a more sustainable and healthy environment by putting the recommended framework into practice.

  • PDF

ML-based Allowable Axial Loading Estimation of Existing RC Building Structures (기계학습 기반 노후 철근콘크리트 건축물의 축력허용범위 산정 방법)

  • Hwang, Heejin;Oh, Keunyeong;Kang, Jaedo;Shin, Jiuk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.5
    • /
    • pp.257-266
    • /
    • 2024
  • Due to seismically deficient details, existing reinforced concrete structures have low lateral resistance capacities. Since these building structures suffer an increase in axial loads to the main structural element due to the green retrofit (e.g., energy equipment/device, roof garden) for CO2 reduction and vertical extension, building capacities are reduced. This paper proposes a machine-learning-based methodology for allowable ranges of axial loading ratio to reinforced concrete columns using simple structural details. The methodology consists of a two-step procedure: (1) a machine-learning-based failure detection model and (2) column damage limits proposed by previous researchers. To demonstrate this proposed method, the existing building structure built in the 1990s was selected, and the allowable range for the target structure was computed for exterior and interior columns.

Selection of Energy Conservation Measures for Building Energy Retrofit: a Comparison between Quasi-steady State and Dynamic Simulations in the Hands of Users

  • Kim, Sean Hay
    • KIEAE Journal
    • /
    • v.16 no.6
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: Quasi-steady state simulations have played a pivoting role to expand the user group of simulation to design engineers and architects in Korea. Initially they are introduced in the market as a building energy performance rating tool. In domestic practice, however, quasi-steady state simulations seem to be regarded as a de facto simulation only available for energy retrofit. Selection of ECMs and economic feasibility analysis are being decided through these tools, which implies that running these tools has become a norm step of the Investment-grade Audit. Method: This study aims at identifying issues and problems with the current practice via test cases, analyzing the reasons and opportunities, and then eventually suggesting proper uses of quasi-steady state and dynamic simulations. Result: The functionality of quasi-steady state simulations is more optimized to the rating. If they are to used for energy retrofits, their off-the-shelf functions also need to be expanded for customization and detailed reports. Yet their roles may be limited only to the go/no go decision; because their algorithms are still weak at precisely estimating energy and load savings that are required for making investment decisions compared to detailed simulations.

Research on Health Performance Evaluation of Existing Buildings using WELL Building Standard - for Green Remodeling applied Buildings - (웰 빌딩 스탠다드를 활용한 기존 건축물의 건강성능평가 연구 - 그린리모델링 적용 건축물을 대상으로 -)

  • Lee, Du Hwan;Kim, Young Il;Kim, Jae Moon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.36 no.2
    • /
    • pp.165-173
    • /
    • 2020
  • The purpose of this research is to evaluate the health performance of existing buildings which completed green remodeling using the WELL Building Standard developed by Delos in the USA. The features and the level of improvement in health were examined and the results were as follows. As a result of comprehensive evaluation of the health performance of the target building, the health performance after green remodeling improvement was improved by 17.3% compared to before green remodeling. As a result of applying the alternatives for improving health performance, improvements were 22.9% by Alternative 1, 28.8% by Alternative 2, and 28.7% by Alternative 3. If the improvement ratio with respect to the construction cost were compared, Alternative 1 was the best followed by Alternative 2. Finally, the cost effectiveness of improving health performance against construction cost were best in the order of self-closing door installation, airtight seal, and pest inspections.

Behaviour of FRP composite columns: Review and analysis of the section forms

  • Rong, Chong;Shi, Qingxuan;Zhao, Hongchao
    • Advances in concrete construction
    • /
    • v.9 no.2
    • /
    • pp.125-137
    • /
    • 2020
  • As confining materials for concrete, steel and fibre-reinforced polymer (FRP) composites have important applications in both the seismic retrofit of existing reinforced concrete columns and in the new construction of composite structures. We present a comprehensive review of the axial stress-strain behaviour of the FRP-confined concrete column. Next, the mechanical performance of the hybrid FRP-confined concrete-steel composite columns are comprehensively reviewed. Furthermore, the results of FRP-confined concrete column experiments and FRP-confined circular concrete-filled steel tube experiments are presented to study the interaction relationship between various material sections. Finally, the combinations of material sections are discussed. Based on these observations, recommendations regarding future research directions for composite columns are also outlined.

An Experimental Study on Variable-Speed Control of an Ground-Water Circulation Pump for a Ground Source Multi-Heat Pump System (주거용 건물 지열원 멀티 히트펌프시스템의 지열순환펌프 가변유량제어에 관한 실증연구)

  • Song, Suwon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.8
    • /
    • pp.443-449
    • /
    • 2013
  • The purpose of this study is to propose an enhanced variable-speed control method of ground-water circulation pumps using inlet and outlet ground-water temperature difference and analyze its effect for the ground source multi-heat pump system installed in a single-family house. As a result, it has shown to significantly reduce the electricity use of ground-water circulation pump and improve overall system Coefficient of Performance (COP) due to the proposed variable-speed control under partial load conditions after oversized and inefficient single-speed pump retrofit.