• 제목/요약/키워드: green reduction

검색결과 1,167건 처리시간 0.031초

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • 제14권2호
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

옥상녹화에 따른 공동주택 에너지 저감효과 분석 연구 (An Analysis of Energy Reduction Effects in Housing According to Green Roof)

  • 김지현;손형민;권혁삼;김정곤;이범식
    • 토지주택연구
    • /
    • 제7권4호
    • /
    • pp.299-305
    • /
    • 2016
  • 본 연구는 기후변화 대응을 위한 계획적 수단으로서 옥상녹화에 따른 건축물 에너지 저감효과를 분석하여 옥상녹화 적용확대를 위한 기초자료를 제시하는데 목적이 있다. 대상지는 최근 준공된 공동주택 중 옥상녹화가 적용된 주동과 부대복리시설을 선정하였다. 건축 유형에 따라 경량형(토심 20cm) 및 혼합형(토심 40cm) 옥상녹화를 적용하고, 디자인 빌더(Design Builder)를 활용하여 옥상녹화 적용에 따른 에너지 저감량을 비교 분석하였다. 분석결과, 모든 대상 건축물에서 옥상녹화 적용시 에너지 저감효과가 있으며, 혼합형 옥상녹화가 경량형 옥상녹화에 비해 냉 난방 에너지 저감효과가 더 큰 것으로 나타났다.

Influence of Low Growing Vegetation in Reducing Stormwater Runoff on Green Roofs

  • Krishnan, Raymond;Ahmad, Hamidah
    • 국제초고층학회논문집
    • /
    • 제3권4호
    • /
    • pp.273-278
    • /
    • 2014
  • Green roof's performance in reducing stormwater runoff has been reported by numerous studies. Nonetheless, the roles of low growing vegetation in influencing stormwater runoff reduction on green roofs have been greatly overlooked. This paper describes an experiment investigating the influence of low growing vegetation in the reduction of tropical stormwater runoff on extensive green roofs. Three types of locally occurring native vegetation and one non-native Sedum species were selected (fern, herb, grass and succulent) for the experiment. Stormwater runoff reduction performance from different low growing species was done by measuring excess water runoff from the simulated green roof modules. The results show significant differences in stormwater runoff reduction from different types of vegetation. Fern was the most effective in reducing stormwater runoff, followed by herb, Sedum and grass. Vegetative characters that are found to attribute towards the performance of stormwater runoff are rooting density, structure, density, leaf type, and vegetation biomass.

경량모듈형 옥상녹화시스템의 온도저감 및 열수지 평가 (Assessment of Temperature Reduction and Heat Budget of Extensive Modular Green Roof System)

  • 김세창;박봉주
    • 원예과학기술지
    • /
    • 제31권4호
    • /
    • pp.503-511
    • /
    • 2013
  • 본 연구는 돌나물과 한국잔디를 식재한 경량 모듈형 옥상녹화시스템의 온도저감과 열수지를 평가하였다. 식물생육은 초고와 피복율을 측정하였으며, 2012년 8월 2일부터 3일까지 48시간 동안 콘크리트와 옥상녹화 표면, 토양 속, 모듈 하부의 온도와 순복사, 증발산량을 측정하였다. 기온이 $34.6^{\circ}C$로 가장 높았던 8월 3일 15:00시의 표면온도는 콘크리트가 $57.5^{\circ}C$로 가장 높았으며, 그 다음으로 돌나물 $40.1^{\circ}C$, 한국잔디 $38.3^{\circ}C$의 순으로 옥상녹화 조성 시 큰 폭으로 온도가 저감되는 것으로 나타났다. 토양 속과 모듈 하부도 옥상녹화에 의한 온도저감 효과가 나타났으며, 한국잔디가 돌나물보다 온도저감 효과가 큰 것으로 나타났다. 콘크리트 표면과 비교하여 옥상녹화 최고 온도는 약 2시간 정도 지연되는 것으로 나타났다. 표면의 온도저감에는 식물종, 기온, 토양수분이 영향을 미치고, 모듈 하부의 온도저감에는 식물종, 기온, 토양수분, 표면온도가 유의하게 영향을 미친 것으로 나타났다. 열수지 분석결과, 현열은 콘크리트 표면이 가장 높았으며, 옥상녹화 시 감소하는 경향을 보였으며 잠열은 한국잔디가 돌나물보다 높았다. 따라서 온열환경 개선을 위해서는 한국잔디가 돌나물보다 옥상녹화 적용에 더 효과적임을 알 수 있었다.

그린리모델링 건물에 대한 에너지소비량 및 보정 사례연구 (A Case Study on Energy Consumption and Calibration of Green Remodeling Buildings)

  • 김동일;이병호
    • 한국태양에너지학회 논문집
    • /
    • 제40권5호
    • /
    • pp.47-58
    • /
    • 2020
  • Ministry of Land, Infrastructure and Transport(MOLIT) has increased reduction rate from 18.1% to 32.7% in Building sector compared to BAU of the national greenhouse gas emission according to the 2030 Greenhouse Gas Reduction Road map Amendment. For this purpose, MOLIT has been activating the green remodeling projects for existing buildings. Considering that 15 year old buildings after completion are 74% (5.25 million buildings) among about 7 million existing building stocks in Korea, reduction of building energy consumption by green remodeling is urgently needed, However, it is a major difficulty of activation for green remodeling projects because there are few case studies on Before and After building energy consumption of actual green remodeling projects. Considering that building energy performance and value increase after green remodeling through previous researches, additional studies of the energy consumption assessment on actual green remodeling projects are essential. Therefore, this study aims to propose results on Before and After building energy consumption of actual green remodeling projects.

A Case Study of Extensive Green Roof System for Tropical Climate in Malaysia

  • Kok, Kah Hoong;Jung, Kwansue;Sidek, Lariyah Mohd;Abidin, Mohd Roseli Zainal;Felix, Micah Lourdes
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.329-329
    • /
    • 2016
  • Rapid urbanization has taken environmental toll on the surrounding which can be witnessed by the advent of global warming and climate change. Driven by environmental needs, Green Building Index (GBI) was established in Malaysia to drive initiative to lead the property industry towards becoming more environmental friendly. Green roofs (roof with vegetated cover) as one of the assessment criteria of GBI, are gaining attention in the Malaysian society as a versatile new environmental friendly mitigation technology. This paper evaluates the qualitative and quantitative performances of an extensive green roof at Humid Tropics Centre under local tropical climate. Simulations showed that the extensive green roof system could reduce the peak discharge up to 26% in relation to impervious brown roof. Its reduction ability decreased for storms with intense rainfall. Increment of pH was observed for the green roof runoff and the runoff water quality ranged between class I and II under Water Quality Index (WQI). High concentrations of phosphate were noticed in the runoff samples and substrates (fertilized planting soil) might be the potential contributor. Findings indicate that there was a reduction of around $1.5^{\circ}C$ for indoor temperature of the building after installation of the extensive green roof.

  • PDF

Evaluation of Green House Gases (GHGs) Reduction Plan in Combination with Air Pollutants Reduction in Busan Metropolitan City in Korea

  • Cheong, Jang-Pyo;Kim, Chul-Han;Chang, Jae-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • 제5권4호
    • /
    • pp.228-236
    • /
    • 2011
  • Since most Green House Gases (GHGs) and air pollutants are generated from the same sources, it will be cost-effective to develop a GHGs reduction plan in combination with simultaneous removal of air pollutants. However, effects on air pollutants reduction according to implementing any GHG abatement plans have been rarely studied. Reflecting simultaneous removal of air pollutants along with the GHGs emission reduction, this study investigated relative cost effectiveness among GHGs reduction action plans in Busan Metropolitan City. We employed the Data Envelopment Analysis (DEA), a methodology that evaluates relative efficiency of decision-making units (DMUs) producing multiple outputs with multiple inputs, for the investigation. Assigning each GHGs reduction action plan to a DMU, implementation cost of each GHGs reduction action plan to an input, and reduction potential of GHGs and air pollutants by each GHGs reduction action plan to an output, we calculated efficiency scores for each GHGs reduction action plan. When the simultaneous removal of air pollutants with the GHGs reduction were considered, green house supply-insulation improvement and intelligent transportation system (ITS) projects had high efficiency scores for cost-positive action plans. For cost-negative action plans, green start network formation and running, and daily car use control program had high efficiency scores. When only the GHGs reduction was considered, project priority orders based on efficiency scores were somewhat different from those when both the removal of air pollutants and GHGs reduction were considered at the same time. The expected action plan priority difference is attributed to great difference of air pollutants reduction potential according to types of energy sources to be reduced.

공동주택단지 내 인공지반 녹지조성 형태에 따른 우수유출 저감효과 (A Study on Runoff Water Reduction Effects According to Shapes of Formation of Artificial Soil Green Area in Multi-Housing Complex)

  • 남미아;장대희;김현수
    • KIEAE Journal
    • /
    • 제13권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This study aims to analyze, by forming an experimental area of artificial soil green area that is of equal scale and analyzing the characteristics of runoff water in accordance with the cross-section configuration, applied the benefits in an actual multi-housing case study complex. In examining the measurement test results of the runoff water infiltration amount and surface runoff amount of a low-profile type green area(Dish type) and a general type green area(Mound type), Dish type was seen to have 1.5-times higher runoff water infiltration amount than Mound type during heavy rainfalls and showed about a 50% reduction with respect to the surface runoff amount. In other words, artificial soil green area offers the benefit of reduction of surface runoff amount and suggests, in actuality even with a change to the cross-sectional configuration of artificial soil green area alone at the time of construction of multi-housings, the possibility of benefits and reduction of costs spent on existing rainwater management facilities.

한국잔디식재 옥상녹화의 온도저감 및 증발산량 평가 (Assessment of Temperature Reduction and Evapotranspiration of Green Roof Planted with Zoysia japonica)

  • 김세창;이현정;박봉주
    • 한국환경과학회지
    • /
    • 제22권11호
    • /
    • pp.1443-1449
    • /
    • 2013
  • This was an experimental study to evaluate temperature reduction and evapotranspiration of extensive green roof. Three test cells with a dimension of $1.2(W){\times}1.2(D){\times}1.0(H)$ meters were built using 4-inch concrete blocks. Ten-centimeter concrete slab was installed on top of each cell. The first cell was control cell with no green roof installed. The second and third cells were covered with medium-leaf type Zoysiagrass (Zoysia japonica) above a layer of soil. Soil thickness on the second cell was 10cm and that on the third cell was 20cm. Air temperature, relative humidity and solar irradiance were measured using AWS (automatic weather system). Temperature on top surface and ceiling of the control cell and temperature on top surface, below soil and ceiling of green roof cells was measured. Evapotranspiration of the green roof cells were measured using weight changes. Compared with temperature difference on the control cell, temperature difference was greater on green roof cells. Between two green roof cells, the temperature difference was greater on the third cell with a thicker soil layer. Temperature differences below soil and on ceilings of green roof cells were found greater than those of the control cell. Between the green roof cells, there was no difference in the temperature reduction effects below soil and on ceilings based on substrate depth. In summary, green roof was found effective in temperature reduction due to evapotranspiration and shading effect.

Green Wall 시스템의 설계 및 해석을 위한 기초연구 (A Basic Study for Design and Analysis of the Green Wall System)

  • 박시삼;김종민;김홍택
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2005년도 지반공학 공동 학술발표회
    • /
    • pp.681-688
    • /
    • 2005
  • The Green Wall is the highest eco-system among a segmental retaining wall systems. Recently, the demand of high segmental retaining wall (SRW) is increased in domestic. The soil nailing system is applied in order to maintain the high SRW stability for steeper slope. However, the proper design approach that can consider the earth pressure reduction effects in soil nailing system has not been proposed. Hence, the purpose of this study was to provide the design and analysis technique of the segmental retaining wall reinforced by soil nailing. Also, in this study, various parametric studies using numerical method as shear strength reduction (SSR) technique were carried out. In the parametric study, the length ratio and the bond ratio of the soil nailing were changed to identify the earth pressure reduction effect of the retaining wall reinforced by soil nailing.

  • PDF