• Title/Summary/Keyword: green phosphorescent organic light-emitting diodes

Search Result 20, Processing Time 0.02 seconds

Charge Trapping Host Structure for High Efficiency in Phosphorescent Organic Light-Emitting Diodes

  • Lee, Jun-Yeob
    • Journal of Information Display
    • /
    • v.9 no.2
    • /
    • pp.14-17
    • /
    • 2008
  • A charge trapping host structure was developed to improve the light-emitting efficiency of green phosphorescent organic light-emitting diodes. N, N'-dicarbazolyl-3,5-benzene(mCP) and a spirobifluorene based triplet host(PHl) were co-deposited as hosts in the emitting layer and the device performance was examined according to the composition mCP and PH1. The results showed that the quantum efficiency could be improved by 30 % using a mixed host of mCP and PH1.

Highly Efficient Green Phosphorescent Organic Light Emitting Diodes

  • Lee, Se-Hyung;Park, Hyung-Dol;Kang, Jae-Wook;Kim, Hyong-Jun;Kim, Jang-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.496-498
    • /
    • 2008
  • We have developed green phosphorescent organic light-emitting diodes (OLEDs) with high quantum efficiency. Wide-energy-gap material, 1,1-bis[(di-4-tolylamino) phenyl]cyclohexane (TAPC), with high triplet energy level was used as a hole transporting layer. Electrophosphorescent devices fabricated using TAPC as a hole-transporting layer and N,N'-dicarbazolyl-4,4'-biphenyl (CBP) doped with fac-tris(2-phenylpyridine) iridium [Ir(ppy)3] as the emitting layer showed the maximum external quantum efficiency ($\eta_{ext}$) of 19.8 %, which is much higher than the devices adopting 4,4'-bis[N-(1-naphthyl)-N-phenyl-amino]biphenyl (NPB) (${\eta}B_{ext}=14.6%$) as a hole transporting layer.

  • PDF

Efficient White Phosphorescent Organic Light-emitting Diodes for Solid-State Lighting Applications Using an Exciton-confining Emissive-Layer Structure

  • Lee, Jong-Hee;Lee, Jeong-Ik;Lee, Joo-Won;Lee, Jun-Yeob;Kang, Dong-Min;Yuanc, Wei;Kwon, Soon-Ki;Chu, Hye-Yong
    • Journal of Information Display
    • /
    • v.10 no.2
    • /
    • pp.92-95
    • /
    • 2009
  • Highly efficient blue and white phosphorescent organic light-emitting diodes (PHOLEDs) with an exciton-confining structure were investigated in this study. Effective charge confinement was achieved by stacking two emitting layers with different charge-transporting properties, and blue PHOLEDs with a maximum luminance efficiency of 47.9 lm/W were developed by using iridium(III) bis(4,6-(difluorophenyl) pyridinato-N,C2')picolinate (FIrpic) as an electrophosphorescent dopant. Moreover, when the optimized green and red emitting layers were sandwiched between the two stacked blue emitting layers, white PHOLEDs (WOLEDs) with peak external and luminance efficiencies of 19.0% coupling technique.and 54.0 lm/W, respectively, were obtained without the use of any out-coupling technique.

Effect of Stepwise Doping on Performance of Green Phosphorescent Organic Light-Emitting Diodes (단계적 도핑구조에 따른 녹색 인광 유기발광 다이오드의 성능에 미치는 효과에 관한 연구)

  • Hwang, Kyo-Min;Lee, Song-Eun;Lee, Seul-Bee;Yoon, Seung-Soo;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • We investigated green phosphorescent organic light-emitting diodes with stepwise doping to improve efficiency roll-off and operational lifetime by efficient distribution of triplet excitons. The host material which was 4,4,N,N'-dicarbazolebiphenyl (CBP) of bipolar characteristic that can control the carrier in emitting layer (EML). When the EML devided into four parts with different doping concentration, each devices shows various efficiency roll-off and lifetime enhancement. The distribution of the carrier and excitons in the EML can be confirmed by using stepwise doping structure. The properties of device C exhibited luminous efficiency of 51.10 cd/A, external quantum efficiency of 14.88%, respectively. Lifetime has increased 73.70% compared to the reference device.

Effect of Changing the Thickness of Charge Control Layer on Performance of Green Phosphorescent Organic Light-Emitting Diodes (녹색 인광 유기발광다이오드에서 전하 조절층의 두께 변화가 성능에 미치는 효과에 대한 연구)

  • Lee, Dong-Hyung;Lee, Seok-Jae;Koo, Ja-Ryong;Lee, Ho-Won;Lee, Song-Eun;Yang, Hyung-Jin;Park, Jae-Hoon;Kim, Young-Kwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.244-250
    • /
    • 2013
  • We investigated green phosphorescent organic light-emitting diodes (PHOLEDs) with charge control layer (CCL) to produce high efficiency. The CCL and host material which was 4,4,N,N'-dicarbazolebiphenyl (CBP) of bipolar property can control the carrier movement in emitting layer (EML). The performance improvement by the insertion of CCL was realized to the well confined exciton and the reduced triplet exciton quenching effect in EML. Five types of devices (Device A, B, C, D, and E) were fabricated following the thickness of CCL within EML. The properties of device D using optimized thickness of CCL showed external quantum efficiency of 16.22% and luminous efficiency of 55.76 cd/A, respectively.

Synthesis of 5,6-Dihydro[1,10]phenanthroline Derivatives and Their Properties as Hole-Blocking Layer Materials for Phosphorescent Organic Light-Emitting Diodes

  • Lee, Hyo-Won;An, Jung-Gi;Yoon, Hee-Kyoon;Jang, Hyo-Sook;Kim, Nam-Gwang;Do, Young-Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.10
    • /
    • pp.1569-1574
    • /
    • 2005
  • To develop new hole-blocking materials for phosphorescent organic light-emitting diodes (PhOLEDs), 5,6-dihydro-2,9-diisopropyl-4,7-diphenyl[1,10]phenanthroline (1) and 5,6-dihydro-2,9-diisopropyl-4-(4-methoxyphenyl)-7-phenyl[1,10]phenanthroline (2) were synthesized. While the absorption spectrum of 1 is very similar to that of 2, the photoluminescence spectrum of 1 has the feature of the narrower and blue-shifted blueviolet emission at the peak of 356 nm compared to that of 2. The HOMO and LUMO energy levels of 1 and 2 were estimated from the measurement of cyclic voltammetry, and 1 has the appropriate levels for a holeblocking layer (HBL). The use of 1 as a HBL in a green PhOLED led to good efficiency of 23.6 cd/A at 4.4 mA/$cm^2$.

Solution Processed Hexaazatrinaphthylene derivatives as a efficient hole injection layer for phosphorescent organic light-emitting diodes (신규 용액공정 정공주입층 소재 Hexaazatrinaphthylene 유도체를 도입한 인광 유기전기발광소자)

  • Lee, Jangwon;Sung, Baeksang;Lee, Seung-Hoon;Yoo, Jae-Min;Lee, Jae-Hyun;Lee, Jonghee
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.706-712
    • /
    • 2020
  • To improve light-emitting performance of green phosphorescent organic light-emitting diodes (OLEDs), we introduced new hole injection materials-hexaazatrinaphthylene (HATNA) derivatives as a solution processed hole injection layer (HIL). The HATNA derivative has a low the lowest unoccupied molecular orbital (LUMO) energy level, similar to the work function of Indium Tin Oxide (ITO), showing a different concept of hole injection mechanism. It was confirmed that the device efficiency of OLEDs using HATNA-HIL showed the improved external quantum efficiency from 10.8% to 15.6% and current efficiency from 32.7 cd/A to 42.7 cd/A due to the balance of electrons and holes in the emissive layer.

Efficient Green Phosphorescent OLEDs with Hexaazatrinaphthylene Derivatives as a Hole Injection Layer (Hexaazatrinaphthylene 유도체를 정공 주입층으로 사용한 고효율 녹색 인광 OLEDs)

  • Lee, Jae-Hyun;Lee, Jonghee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.6
    • /
    • pp.725-729
    • /
    • 2015
  • Organic light emitting diodes (OLEDs) are regarded as the next generation display and solid-state lighting due to their superb achievements from extensive research efforts on improving the efficiency and stability of OLEDs in addition to developing new materials. Herein, efficient green phosphorescent OLEDs were obtained by using hexaazatrinaphthylene (HAT) derivatives as a hole injection layer. External quantum and current efficiencies of OLEDs were enhanced from 8.8% and 30.8 cd/A to 13.6% and 47.7 cd/A, respectively by inserting a thin layer of HAT derivatives between the ITO and hole transporting layer. The enhancement of OLEDs was found to be originated from the inserted HAT derivatives, which resulted in the optimized hole-electron balance inside the emission layer.

Effect of Hole Transport Layer on the Electrical and Optical Characteristics of Inverted Organic Light-Emitting Diodes (정공수송층이 역구조 OLED의 전기 및 광학적 특성에 미치는 영향)

  • Se-Jin Im;Dae-Gyu Moon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.397-402
    • /
    • 2023
  • We have developed inverted green phosphorescent organic light emitting diodes (OLEDs) using 1,1-bis[(di-4-tolylamino)phenyl]cyclohexane (TAPC) and bis(carbazole-9-yl)biphenyl (CBP) hole transport layers. The driving voltage, current efficiency, power efficiency, and emission characteristics of devices were investigated. While the driving voltage for the same current density was about 1~2 V lower in the devices with the TAPC layer, the maximum luminance was higher in the device with the CBP layer. The maximum current efficiency and power efficiency were 3.2 and 2.7 times higher in the device with the CBP layer, respectively. The higher efficiency in the CBP device resulted from the enhanced hole-electron balance although weak parasitic recombination takes place in the CBP hole transport layer.