• Title/Summary/Keyword: green ion

Search Result 334, Processing Time 0.026 seconds

Characteristics of Ion Index by Type of Land Use in Small City - Focused on Chungju (중소도시 토지이용유형별 이온지수 특성 - 충주시를 대상으로 -)

  • Kim, Jeong-Ho;Lee, Sang-Hoon;Yoon, Yong-Han
    • Journal of Environmental Science International
    • /
    • v.27 no.7
    • /
    • pp.489-497
    • /
    • 2018
  • In this study, the ion index characteristics of small and medium urban land use types were investigated in the city of Chungju. The average temperature for each land use type was in the order: general commercial district ($29.59^{\circ}C$) > general residential district ($28.34^{\circ}C$) > productive green district ($28.31^{\circ}C$). The average relative humidity was in the order: productive green district (70.12%) > general residential district (69.93%) > general commercial district (66.48%). The average wind speed was in the order: productive green district (0.95 m/s) > general commercial district (0.87 m/s) > general residential district (0.54 m/s). Positive and negative ions were investigated to determine the ion index by land use type. The average amount of positive ion generated was in the order: general commercial district ($737ea/cm^3$) > general residential district ($492ea/cm^3$) > productive green district ($445ea/cm^3$). The average negative ion production decreased in the order: productive green district ($930ea/cm^3$) > general residential district ($754ea/cm^3$) > general commercial district ($744ea/cm^3$). The ion index calculated from measured data can be arranged in the order: productive green district (2.09) > general residential district (1.53) > general commercial district (1.01). These results confirm the state of positive and negative ion generation in each land use type. Further, the differences in the ion index by land use type were confirmed. However, a limitation of this study is that simple summer measurements were conducted, and seasonal characteristics were not considered. Therefore, any future investigation and research should consider seasonal variation characteristics.

Removal of Alkali Metal Ion and Chlorine Ion Using the Ion Exchange Resin (이온교환수지를 이용한 알칼리 금속 이온 및 염소 이온의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.30 no.4
    • /
    • pp.276-281
    • /
    • 2020
  • A research was conducted on the removal of ion from the solution involving the alkali metal ion and chlorine ion using ion exchange resin. The cation exchange resin and anion exchange resin was used for the remove of metal ion (Na+ and K+) and chlorine ion (Cl-), respectively. In the case of solution A (involving 36,633 ppm of Na+ and 57,921 ppm of Cl-), the Na+ ion and Cl- ion were removed over 99% within 20 min. In the case of solution B (involving 1,638 ppm of K+), the K+ ion was removed over 99% within 3 min.

Extraction of Mg ion and Fabrication of Mg Compound from Ferro-Nickel Slag (페로니켈 슬래그로부터 Mg 이온의 용출특성과 화합물 제조)

  • Chu, Yong-Sik;Lim, Yoo-Ree;Park, Hong-Bum;Song, Hun;Lee, Jong-Kyu;Lee, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.613-617
    • /
    • 2010
  • Ferro-Nickel slag is one of the by-products in Ferro-Nickel manufacturing process. The slag is composed of $SiO_2$, MgO, $Fe_2O_3$ and others. But the slag has been buried at landfill despite having valuable elements. This study tried to extract Mg ion and fabricate Mg compound from ferro-nickel slag using hydrochloric acid solution. Mg ion was extracted with Si, Fe and other ions in HCl solution. So reprocess was needed for gaining high purity Mg ion. It was thought that Si ion or $SiO_2$ precipitated in HCl solution and removed from solution in filtering process. Fe ion converted into $Fe(OH)_3$ after reacted with $NH_4OH$ and precipitated in HCl solution. After these process, the filtrate was composed of high purity Mg ion. $MgCl_2{\cdot}NH_4Cl{\cdot}6H_2O$ was obtained through drying of filtrate and this product was changed into MgO by burning process ($600^{\circ}C$-30 min). That is, 1st material or solution for manufacturing 2nd product was fabricated using acid dissolution method and other treatments.

Oxidative DNA damage by Ethanol Extract of Green Tea

  • Park You-Gyoung;Kwon Hoonjeong
    • Environmental Mutagens and Carcinogens
    • /
    • v.25 no.2
    • /
    • pp.71-75
    • /
    • 2005
  • Green tea and their major constituents such as catechins are famous materials for their anti-oxidative and anti-carcinogenic activity, but many compounds with reducing power can promote the oxidation in their oxidized form or in the presence of metal ion. We investigated the pro-oxidative effect of the ethanol extract equivalent up to 30mg of dried weight of green tea leaves in four in vitro systems which could be used for detecting DNA damage. Although ethanol extract of green tea did not show significant mutagenicity in Salmonella typhimurium TA102, which is sensitive strain to oxidative stress, it degraded deoxyribose extensively in the presence of $FeCl_3-EDTA$ complex, promoted 8-oxoguanine formation in the live bacteria cell, Salmonella typhimurium TAI04, and cleaved super coiled DNA strand with the help of copper ion. It suggested that green tea, famous anti-oxidative material, can be pro-oxidant according to the condition of extraction or metal existence.

  • PDF

Evaluation of Pedestrian Space Ion Index by Land Use Type in Heat wave - Focused on ChungJu - (폭염시 토지이용유형별 보행공간 이온지수 평가 - 충주시를 대상으로 -)

  • Yoon, Yong Han;Yoon, Ji Hun;Kim, Jeong Ho
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.354-365
    • /
    • 2019
  • This study measured and analyzed the weather characteristics and the air-ion characteristics of walking space by land use type in Chungju, Chungcheongbuk Province during the heat wave. We used the land registration map to classify the type of land use in walking areas in the studied into the production and green area, the residential area, and the commercial area. We then selected 44 measurement points in about 4.1 km. They included 12 walking space points in the green area, 14 in the residential area, and 18 in the commercial area. Moreover, we calculated the ion index by analyzing the impact of weather factors such as temperature, relative humidity, solar radiation, and net radiation in the walking space on the anion generation and cation generation by land use type during the heat wave. Comparison of air ion characteristics in walking space by type of land use during the heat wave showed that the average cation generation was in the order of commercial area ($700.73cations/cm^3$) > residential area ($600.76cations/cm^3$) > green area ($589.73cations/cm^3$). The average anion generation was in the order of green area ($663.95anions/cm^3$) > residential area ($628.48anions/cm^3$) > commercial area ($527.48anions/cm^3$). The average ion index was in the order of green area (1.13) > residential area (1.04) > commercial area (0.75). This study checked the weather characteristics, cation generation, and anion generation in walking space according to the land use type during the heat wave and checked the difference of ion indexes in the walking space according to the land use type. However, there were limitations in the lack of accurate comparison according to the land use due to the moving measurement and the insufficient quantitative comparison according to the change of road width. Therefore, we recommend further studies that consider the road characteristics.

Preparation and Electrochemical Applications of Pore-filled Ion-exchange Membranes with Well-adjusted Cross-linking Degrees: Part I. All Vanadium Redox Flow Battery (가교도가 조절된 세공충진 이온교환막의 제조 및 전기화학적 응용: Part I. 전 바나듐 레독스 흐름전지)

  • Lee, Ji-Eun;Park, Ye-Rin;Kim, Do-Hyeong;Kang, Moon-Sung
    • Membrane Journal
    • /
    • v.27 no.5
    • /
    • pp.406-414
    • /
    • 2017
  • In this study, we have developed pore-filled ion-exchange membranes (PFIEMs) filled with ionomer in a thin polyethylene porous film (thickness = $25{\mu}m$) and investigated the charge-discharge characteristics of the all vanadium redox flow battery (VRFB) employing them. Especially, the degree of crosslinking and free volume of the PFIEMs were appropriately controlled to produce ion-exchange membranes exhibiting both the low membrane resistance and low vanadium permeability by mixing crosslinking agents having different molecular size. As a result, the prepared PFIEMs exhibited excellent electrochemical properties which are comparable to those of the commercial membranes. Also, it was confirmed through the experiments of vanadium ion permeability and VRFB performance evaluation that the PFIEMs showed low vanadium ion permeability and high charge-discharge efficiency in comparison with the commercial membrane despite their thin film thickness.

Removal of Ammonia Nitrogen, Manganese and Arsenic in The Ion Exchanged Natural Zeolite (이온 치환된 천연 제올라이트를 활용한 암모니아성 질소, Mn, As의 제거)

  • Lee, Kyung-Han;Kil, Bo-Min;Ryu, Cheol-Hwi;Hwang, Gab-Jin
    • Membrane Journal
    • /
    • v.29 no.5
    • /
    • pp.237-245
    • /
    • 2019
  • Ammonia nitrogen is well known as a substance that causes the eutrophication with a phosphorus in the water, because it is contained in the industrial wastewater, agricultural and the stockbreeding wastewater. In addition, manganese (Mn) and arsenic (As) are included in the mine treated water, etc., and are known as a source of water pollution. Natural zeolites are used to remove ammonia nitrogen in water but it have a low adsorption capacity. In order to improve the low adsorption capacity of the natural zeolite, ion substitution was carried out with $Na^+$, $Ca^{2+}$, $K^+$ and $Mg^{2+}$. The adsorption capacity and removal rate of ammonia nitrogen ($NH_4-N$) were the highest at 0.66 mg/g and 89.8% in $Na^+$ ion exchanged zeolite. Adsorption experiments of Mn and As were performed using ion exchanged zeolites. Ion exchanged zeolite with $Mg^{2+}$ showed high adsorption capacity and removal rates of Mn and As.

Li-ion batteries, its applications and research trends

  • Lim, Jinsub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.84.2-84.2
    • /
    • 2015
  • Growing market of electric vehicles such as hybrid, plug-in hybrid, and bare electric vehicles in the world is accelerating the significance of Li-ion batteries as a renewable green energy. According to such market flow, the developing components such as cathode, anode, electrolyte, and separator, composing the Li-ion batteries, is significantly important tasks for the commercialization. In particular, development of the cathode material having high capacity and stable thermal stability is essential for long-distance electric vehicle in the near future. Herein we introduce various applications of Li-ion batteries such as portable electronics, electric vehicles, and energy storage system, and also its research trend, in particular on the cathode materials.

  • PDF

Solubilities of Salen Derivatives and Their Cobalt Complex in Liquid and Supercritical CO2

  • Koh, Seung-Hyun;Jeon, Byung-Wan;Kim, Ha-Kwon;Park, Kwang-Heon;Kim, Hong-Doo
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.4
    • /
    • pp.471-475
    • /
    • 2004
  • The solubility of N,N'-Bis(salicylidene) ethylenediamine (n-salen) and N,N'-bis(3,5-di-tert-butylsalicylidene) ethylenediamine (t-butyl-salen) was studied with in-situ UV-VIS spectrometer. n-Salen is 3-5 times more soluble than t-butyl-salen in liquid or supercritical $CO_2$. This behavior may be attributed to Lewis acid-base interaction between salen and $CO_2$. The chelation of salen with $Co^{++}$ ion in supercritical condition was confirmed to be fast enough above room temperature. However, the metal ion extraction capability of t-butyl salen is relatively poor because of its low solubility and ionic nature of complex.

Study on the Electrochemical Characteristics of Lithium Ion Doping to Cathode for the Lithium Ion Capacitor (리튬이온 커패시터의 음극도핑 및 전기화학특성 연구)

  • CHOI, SEONGUK;PARK, DONGJUN;HWANG, GABJIN;RYU, CHEOLHWI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.5
    • /
    • pp.416-422
    • /
    • 2015
  • Lithium Ion capacitor (LIC) is a new storage device which combines high power density and high energy density compared to conventional supercapacitors. LIC is capable of storing approximately 5.10 times more energy than conventional EDLCs and also have the benefits of high power and long cycle-life. In this study, LICs are assembled with activated carbon (AC) cathode and pre-doped graphite anode. Cathode material of natural graphite and artificial graphite kinds of MAGE-E3 was selected as the experiment proceeds. Super-P as a conductive agent and PTFE was used as binder, with the graphite: conductive agent: binder of 85: 10: 5 ratio of the negative electrode was prepared. Lithium doping condition of current density of $2mA/cm^2$ to $1mA/cm^2$, and was conducted by varying the doping. Results Analysis of Inductively Coupled Plasma Spectrometer (ICP) was used and a $1mA/cm^2$ current density, $2mA/cm^2$, when more than 1.5% of lithium ions was confirmed that contained. In addition, lithium ion doping to 0.005 V at 10, 20 and $30^{\circ}C$ temperature varying the voltage variation was confirmed, $20^{\circ}C$ cell from the low internal resistance of $4.9{\Omega}$ was confirmed.