• Title/Summary/Keyword: green TCS System

Search Result 4, Processing Time 0.017 seconds

S&T Policy Directions for Green Growth in Korea

  • Jang, Jin Gyu
    • STI Policy Review
    • /
    • v.1 no.1
    • /
    • pp.1-21
    • /
    • 2010
  • To achieve the "low carbon green growth" vision, the first step is securing core technologies. Therefore, S&T policy direction for green technology development is urgently needed. As of 2008, investment in green technology (GT) development hovered around 10% of the government's total R&D budget. Thus, the Korean government developed a plan to increase that percentage to 15%, by 2013. To develop reasonable investment strategies for green technology development, targeted strategies that reflect technology and market changes by green technology area are needed. However, the overall planning and coordination of national GT development is currently split among, approximately, 10 government ministries. To establish an efficient green technology development system, the so-called "Green Technology R&D Council" should be launched in collaboration with the Presidential Committee on Green Growth and the National Science and Technology Council. Furthermore, to build a solid foundation for commercializing the outcomes of GT development projects and promote GT transfer, the government should undertake two initiatives. First, the government should reinforce GT R&D performance management, by establishing a GT R&D performance management and evaluation system. Second, the government should implement the "customized packaged support for promoting green technology business rights and commercialization" and present "e-marketplace for market-oriented green technologies". Creating a pan-ministerial policy for GT development policy would necessitate restructuring the HR(Human Resources) development system, which is currently separated by technology area. Based upon mid/long-term HR supply and demand forecasts, the government should design differentiated HR development projects, continuously evaluate those projects, and reflect the evaluation results in future policy development. Finally, to create new GT-related industries, the "Green TCS (Testing, Certification, and Standards) System" needs to be implemented. For objective evaluation and diffusion of R&D results by green technology area, a common standardization plan for testing, analysis, and measurement, like the "Green TCS", should be developed and integrated.

Construction of Methanol-Sensing Escherichia coli by the Introduction of a Paracoccus denitrificans MxaY-Based Chimeric Two-Component System

  • Ganesh, Irisappan;Vidhya, Selvamani;Eom, Gyeong Tae;Hong, Soon Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.6
    • /
    • pp.1106-1111
    • /
    • 2017
  • Escherichia coli was engineered to sense methanol by employing a chimeric two-component system (TCS) strategy. A chimeric MxaY/EnvZ (MxaYZ) TCS was constructed by fusing the Paracoccus denitrificans MxaY with the E. coli EnvZ. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed maximum transcription of ompC and the fluorescence at 0.01% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric MxaYZ. By using this strategy, various chimeric TCS-based bacterial biosensors can be constructed and used for the development of biochemical-producing recombinant microorganisms.

Heavy Metal Detection and Removal in Artificial Wastewater Using Two-Component System Based Recombinant Bacteria (Two-component System 기반 재조합균을 이용한 인공폐수에서의 중금속 인지 및 제거)

  • Ravikumar, Sambandam;Hong, Soon-Ho;Yoo, Ik-Keun
    • Korean Journal of Microbiology
    • /
    • v.48 no.3
    • /
    • pp.187-191
    • /
    • 2012
  • Two-component system (TCS)-based bacterial zinc and copper biosensors, in which green fluorescent protein (GFP) is expressed under the control of zraP and cusC promoter in ZraS/R and CusS/R TCS, were evaluated in artificial wastewater. Bacterial biosensors developed in this study efficiently expressed GFP by the recognition of $Zn^{2+}$ and $Cu^{2+}$ in artificial wastewater. Secondly, TCS-based zinc and copper removing bacteria with the peptide displayed on cell surface were examined in artificial wastewater. Zinc and copper removing bacteria expressed the peptide as a fusion protein such as OmpC-ZBP (zinc binding peptide) and OmpC-CBP (copper binding peptide) on the cell surface when sensing exogenous $Zn^{2+}$ and $Cu^{2+}$ through ZraS/R and CusS/R TCS. The recombinant cell expressing metal-adsorbing peptide could efficiently remove copper and zinc (15 and 18 mg/g dry cell weight, respectively) in artificial wastewater. Therefore, it was demonstrated that the TCS-based recombinant cell for the recognition or removal of heavy metal functions well in artificial wastewater environment.

Engineering of Recombinant Escherichia coli Towards Methanol Sensing Using Methylobacterium extroquens Two-component Systems

  • Selvamani, Vidhya;Ganesh, Irisappan;Chae, Sowon;Maruthamuthu, Murali kannan;Hong, Soon Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.24-31
    • /
    • 2020
  • Five genes (mxbDM, mxcQE and mxaB) are responsible for the transcription of methanol oxidation genes in Methylobacterium strains. Among these, MxbDM and MxcQE constitute the two-component system (TCS) regulating methanol metabolism. In this study, we integrated the methanol-sensing domain of MxbD and MxcQ with the EnvZ/OmpR from Escherichia coli. The domain-swapping strategy resulted in chimeric histidine kinases (HK's) MxbDZ and MxcQZ AM1 containing recombinant E. coli. Real-time quantitative PCR was used to monitor OmpC expression mediated by the chimeric HK and response regulator (RR) OmpR. Further, an ompC promoter based fluorescent biosensor for sensing methanol was developed. GFP fluorescence was studied both qualitatively and quantitatively in response to environmental methanol. GFP measurement also confirmed ompC expression. Maximum fluorescence was observed at 0.05% methanol and 0.01% methanol using MxbDZ and MxcQZ AM1, respectively. Thus the chimeric HK containing E. coli were found to be highly sensitive to methanol, resulting in a rapid response making them an ideal sensor.