• Title/Summary/Keyword: great earthquake

Search Result 177, Processing Time 0.028 seconds

Fragility Curve of Steel Box Bridge Using RFPB Bearing (RFPB 받침을 사용한 Steel Box 교량의 손상도 곡선)

  • Lee, Jongheon;Seo, Sangmok;Kim, Woonhak
    • Journal of the Society of Disaster Information
    • /
    • v.7 no.3
    • /
    • pp.171-180
    • /
    • 2011
  • As a great earthquake hit east Japan recently, the interests for the necessity of earthquake resistant design and earthquake resistance ability of existent structures are much increased. The damage or collapse of a bridge, as a social overhead capital structure affects socially and economically. Thus the evaluation of earthquake resistance ability of these structures is very important. The reviewing methods for earthquake resistance ability are mostly deterministic. Although the deterministic methods are fit for the evaluation of safety of each member, they are not practical for the whole structure. For the evaluation of structural safety for earthquake, the method for the evaluation of fragility or damage is needed for some stages of damage. In this paper, fragility curves of steel box bridge using RFPB bearing for PGA, PGV, SA, SV, SI are constructed, and these are compared with the cases of FPB.

Semi-active friction dampers for seismic control of structures

  • Kori, Jagadish G.;Jangid, R.S.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.493-515
    • /
    • 2008
  • Semi-active control systems have attracted a great deal of attention in recent years because these systems can operate on battery power alone, proving advantageous during seismic events when the main power source of the structure may likely fail. The behavior of semi-active devices is often highly non-linear and requires suitable and efficient control algorithm. This paper presents the comparative study and performance of variable semi-active friction dampers by using recently proposed predictive control law with direct output feedback. In this control law, the variable slip force of semi-active variable friction damper is kept slightly lower than the critical friction force, which allows the damper to remain in the slip state during an earthquake, resulting in improved energy dissipation capability. This control algorithm is able to produce a continuous and smooth slip forces for a variable friction damper. The numerical examples include a structure controlled with multiple variable semi-active friction dampers and with multiple passive friction dampers. A parameter, gain multiplier defined as the ratio of damper force to critical damper control force, is investigated under four different real earthquake ground motions, which plays an important role in the present control algorithm of the damper. The numerically evaluated optimum parametric value is considered for the analysis of the structure with dampers. The numerical results of the variable friction dampers show better performance over the passive dampers in reducing the seismic response of structures.

The Impact of the Great East Japan Earthquake and Fukushima Daiichi Nuclear Accident on People's Perception of Disaster Risks and Attitudes Toward Nuclear Energy Policy

  • Iwai, Noriko;Shishido, Kuniaki
    • Asian Journal for Public Opinion Research
    • /
    • v.2 no.3
    • /
    • pp.172-195
    • /
    • 2015
  • Multiple nationwide opinion surveys, carried out by the government (cabinet office), major media (national newspapers and NHK), the National Institute for Environmental Studies, and the Atomic Energy Society of Japan, have revealed that the Fukushima nuclear accident has heightened people's perception of disaster risks, fear of nuclear accidents, and increased recognition of pollution issues, and has changed public opinion on nuclear energy policy. The opinion gap on nuclear energy policy between specialists and lay people has widened since the disaster. The results of the Japanese General Social Survey data show that objections to the promotion of nuclear energy are strong among females, and weaker among young males and the supporters of the LDP. These findings are similar to the data collected after the Chernobyl accident. People who live in a 70km radius of nuclear plants tend to evaluate nuclear disaster risks higher. Distance from nuclear plants and the perception of earthquake risk interactively correlate with opinions on nuclear issues. Among people whose evaluation of earthquake risk is low, those who live nearer to the plants are more likely to object to the abolishment of nuclear plants. It was also found that the nuclear disaster has changed people's behavior; they now try to save electricity. The level of commitment to energy saving is found to relate to opinions on nuclear issues.

A Study of System Analysis Method for Seismic PSA of Nuclear Power Plants (원자력발전소 지진 PSA의 계통분석방법 개선 연구)

  • Lim, Hak Kyu
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.159-166
    • /
    • 2019
  • The seismic PSA is to probabilistically estimate the potential damage that a large earthquake will cause to a nuclear power plant. It integrates the probabilistic seismic hazard analysis, seismic fragility analysis, and system analysis and is utilized to identify seismic vulnerability and improve seismic capacity of nuclear power plants. Recently, the seismic risk of domestic multi-unit nuclear power plant sites has been evaluated after the Great East Japan Earthquake and Gyeongju Earthquake in Korea. However, while the currently available methods for system analysis can derive basic required results of seismic PSA, they do not provide the detailed results required for the efficient improvement of seismic capacity. Therefore, for in-depth seismic risk evaluation, improved system analysis method for seismic PSA has become necessary. This study develops a system analysis method that is not only suitable for multi-unit seismic PSA but also provides risk information for the seismic capacity improvements. It will also contribute to the enhancement of the safety of nuclear power plants by identifying the seismic vulnerability using the detailed results of seismic PSA. In addition, this system analysis method can be applied to other external event PSAs, such as fire PSA and tsunami PSA, which require similar analysis.

Safety analysis of nuclear containment vessels subjected to strong earthquakes and subsequent tsunamis

  • Lin, Feng;Li, Hongzhi
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.1079-1089
    • /
    • 2017
  • Nuclear power plants under expansion and under construction in China are mostly located in coastal areas, which means they are at risk of suffering strong earthquakes and subsequent tsunamis. This paper presents a safety analysis for a new reinforced concrete containment vessel in such events. A finite element method-based model was built, verified, and first used to understand the seismic performance of the containment vessel under earthquakes with increased intensities. Then, the model was used to assess the safety performance of the containment vessel subject to an earthquake with peak ground acceleration (PGA) of 0.56g and subsequent tsunamis with increased inundation depths, similar to the 2011 Great East earthquake and tsunami in Japan. Results indicated that the containment vessel reached Limit State I (concrete cracking) and Limit State II (concrete crushing) when the PGAs were in a range of 0.8-1.1g and 1.2-1.7g, respectively. The containment vessel reached Limit State I with a tsunami inundation depth of 10 m after suffering an earthquake with a PGA of 0.56g. A site-specific hazard assessment was conducted to consider the likelihood of tsunami sources.

Development of Model Parameter Prediction Equations for Simulating Load-deformation Response of Non-ductile RC Columns (비연성 RC 기둥의 하중-변형 응답 모사를 위한 모델 매개변수 제안)

  • Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.119-129
    • /
    • 2019
  • Many reinforced concrete (RC) buildings constructed prior to 1980's lack important features guaranteeing ductile response under earthquake excitation. Structural components in such buildings, especially columns, do not satisfy the reinforcement details demanded by current seismic design codes. Columns with deficient reinforcement details may suffer significant damage when subjected to cyclic lateral loads. They can also experience rapid lateral strength degradation induced by shear failure. The objective of this study is to accurately simulate the load-deformation response of RC columns experiencing shear failure. In order to do so, model parameters are calibrated to the load-deformation response of 40 RC column specimens failed in shear. Multivariate stepwise regression analyses are conducted to develop the relationship between the model parameters and physical parameters of RC column specimens. It is shown that the proposed predictive equations successfully estimated the model parameters of RC column specimens with great accuracy. The proposed equations also showed better accuracy than the existing ones.

Shaking table test of liquid storage tank with finite element analysis considering uplift effect

  • Zhou, Junwen;Zhao, Ming
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.369-381
    • /
    • 2021
  • The seismic responses of elevated tanks considering liquid-structure interaction are presented under horizontal earthquake. The scaled model tank is fabricated to study the dynamic responses of anchored tank and newly designed uplift tank with replaced dampers. The natural frequencies for structural mode are obtained by modal analysis. The dynamic responses of tanks are completed by finite element method, which are compared with the results from experiment. The displacement parallel and perpendicular to the excitation direction are both gained as well as structural acceleration. The strain of tank walls and the axial strain of columns are also obtained afterwards. The seismic responses of liquid storage tank can be calculated by the finite element model effectively and the results match well with the one measured by experiment. The aim is to provide a new type of tank system with vertical constraint relaxed which leads to lower stress level. With the liquid volume increasing, the structural fundamental frequency has a great reduction and the one of uplift tank are even smaller. Compared with anchored tank, the displacement of uplift tank is magnified, the strain for tank walls and columns parallel to excitation direction reduces obviously, while the one perpendicular to earthquake direction increases a lot, but the values are still small. The stress level of new tank seems to be more even due to uplift effect. The new type of tank can realize recoverable function by replacing dampers after earthquake.

Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계)

  • 유충식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.69-83
    • /
    • 1999
  • Soil-reinforced segmental retaining walls(SRW) have been proven to be high earthquake-resistant structure during recent earthquakes in United States and Japan. The mechanicals behavior of the SRWs under seismic loading, however, has not been fully understood. Although the seismic design issues for the civil engineering structures have gained much attention in Korea due to the increase in frequency of earthquake occurrence, the seismic design for the SRWs has not been being implemented. This study has been undertaken with the aim of developing a more rational seismic design/analysis method for soil-reinforced segmental retaining walls. This paper present fundamentals of current seismic design/analysis method and the results of a comparative study between NCMA and FHWA design guidelines, Practical implications of the findings from this study are discussed in great detail.

  • PDF

A sensor fault detection strategy for structural health monitoring systems

  • Chang, Chia-Ming;Chou, Jau-Yu;Tan, Ping;Wang, Lei
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.43-52
    • /
    • 2017
  • Structural health monitoring has drawn great attention in the field of civil engineering in past two decades. These structural health monitoring methods evaluate structural integrity through high-quality sensor measurements of structures. Due to electronic deterioration or aging problems, sensors may yield biased signals. Therefore, the objective of this study is to develop a fault detection method that identifies malfunctioning sensors in a sensor network. This method exploits the autoregressive modeling technique to generate a bank of Kalman estimators, and the faulty sensors are then recognized by comparing the measurements with these estimated signals. Three types of faults are considered in this study including the additive, multiplicative, and slowly drifting faults. To assess the effectiveness of detecting faulty sensors, a numerical example is provided, while an experimental investigation with faults added artificially is studied. As a result, the proposed method is capable of determining the faulty occurrences and types.

Current Status on Seismic Design/Evaluation of Metropolitan Rapid Transit System (도시철도 구조물의 내진설계 및 평가 현황조사)

  • Kim, Jong-Min;Kim, Jin-Ho;Lim, Nam-Hyoung;Kang, Young-Jong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.220-223
    • /
    • 2008
  • Many structural engineers believed that RC underground structures like subway system might not be seriously damaged during earthquakes, until the Great Hanshin earthquake(a.k.a Kobe earthquake). But there is only one domestic seismic code of rapid transit system that established by Ministry of Construction & Transportation in 2005. Therefore, to investigate of current status on seismic design and evaluation method of rapid transit system is essential to estimate seismic performance of subway structural systems. In this study, comparing domestic codes and seismic evaluation methods with foreign system is performed.

  • PDF