• Title/Summary/Keyword: gray matrix

Search Result 180, Processing Time 0.027 seconds

Tire tread pattern classification using gray level cooccurrence matrix for the binary image (이치화 영상에 대한 계조치 동시발생행렬을 이용한 타이어 접지 패턴의 분류)

  • 박귀태;김민기;김진헌;정순원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.100-105
    • /
    • 1992
  • Texture is one of the important characteristics that has been used to identify objects or regions of interest in an image. Tire tread patterns can be considered as a kind of texture, and these are classified with a texture analysis method. In this sense, this paper proposes a new algorithm for the classification of tire tread pattern. For the classification, cooccurrence matrix for the binary image is used. The performances are tested by experimentally 8 different tire tread pattern and the robustness is examined by including some kinds on noise.

  • PDF

Texture Analysis and Classification Using Wavelet Extension and Gray Level Co-occurrence Matrix for Defect Detection in Small Dimension Images

  • Agani, Nazori;Al-Attas, Syed Abd Rahman;Salleh, Sheikh Hussain Sheikh
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.2059-2064
    • /
    • 2004
  • Texture analysis is an important role for automatic visual insfection. This paper presents an application of wavelet extension and Gray level co-occurrence matrix (GLCM) for detection of defect encountered in textured images. Texture characteristic in low quality images is not to easy task to perform caused by noise, low frequency and small dimension. In order to solve this problem, we have developed a procedure called wavelet image extension. Wavelet extension procedure is used to determine the frequency bands carrying the most information about the texture by decomposing images into multiple frequency bands and to form an image approximation with higher resolution. Thus, wavelet extension procedure offers the ability to robust feature extraction in images. Then the features are extracted from the co-occurrence matrices computed from the sub-bands which performed by partitioning the texture image into sub-window. In the detection part, Mahalanobis distance classifier is used to decide whether the test image is defective or non defective.

  • PDF

Water body extraction in SAR image using water body texture index

  • Ye, Chul-Soo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.337-346
    • /
    • 2015
  • Water body extraction based on backscatter information is an essential process to analyze floodaffected areas from Synthetic Aperture Radar (SAR) image. Water body in SAR image tends to have low backscatter values due to homogeneous surface of water, while non-water body has higher backscatter values than water body. Non-water body, however, may also have low backscatter values in high resolution SAR image such as Kompsat-5 image, depending on surface characteristic of the ground. The objective of this paper is to present a method to increase backscatter contrast between water body and non-water body and also to remove efficiently misclassified pixels beyond true water body area. We create an entropy image using a Gray Level Co-occurrence Matrix (GLCM) and classify the entropy image into water body and non-water body pixels by thresholding of the entropy image. In order to reduce the effect of threshold value, we also propose Water Body Texture Index (WBTI), which measures simultaneously the occurrence of repeated water body pixel pair and the uniformity of water body in the binary entropy image. The proposed method produced high overall accuracy of 99.00% and Kappa coefficient of 90.38% in water body extraction using Kompsat-5 image. The accuracy analysis indicates that the proposed WBTI method is less affected by the choice of threshold value and successfully maintains high overall accuracy and Kappa coefficient in wide threshold range.

Flexible Microelectronics; High-Resolution Active-Matrix Electrophoretic Displays

  • Miyazaki, Atsushi;Kawai, Hideyuki;Miyasaka, Mitsutoshi;Nebashi, Satoshi;Shimoda, Tatsuya;McCreary, Michael
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.575-579
    • /
    • 2005
  • A beautiful, flexible active-matrix electrophoretic display (AM-EPD) device is reported. The flexible AM-EPD device has a $40.0{\times}30.0\;mm^2$ display area, measures about 0.27 mm in thickness, weighs about 0.45 g and possesses only 20 external connections. The flexible AM-EPD device displays clear black-and-white images with 5 gray-scales on $160{\times}120$ pixels. The display is free from residual image problems, because we use an area-gray-scale method on $320{\times}240$ EPD elements, each of which is driven with binary signals. Each pixel consists of 4 EPD elements. In addition, since the response time of the electrophoretic material is as long as approximately 400 ms and since the display possesses a large number of EPD elements, we have developed a special driving method suitable for changing EPD images comfortably. A complete image is formed on the AM-EPD device, consisting of a reset frame and several, typically 6, image frames.

  • PDF

Image Retrieval Using Color feature and GLCM and Direction in Wavelet Transform Domain (Wavelet 변환 영역에서 칼라 정보와 GLCM 및 방향성을 이용한 영상 검색)

  • 이정봉
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.05a
    • /
    • pp.585-589
    • /
    • 2002
  • In this paper, hierarchical retrieval system based on efficient feature extraction is proposed. In order to retrieval the image with robustness for geometrical transformation such as translation, scaling, and rotation. After performing the 2-level wavelet transform on image, We extract moment in low-level subband which was subdivided into subimages and texture feature, contrast of GLCM(Gray Level Co-occurrence Matrix). At first we retrieve the candidate images in database by the ones of image. To perform a more accurate image retrieval, the edge information on the high-level subband was subdivided horizontally, vertically and diagonally. And then, the energy rate of edge per direction was determined and used to compare the energy rate of edge between images for higher accuracy.

  • PDF

Region of Interest Heterogeneity Assessment for Image using Texture Analysis

  • Park, Yong Sung;Kang, Joo Hyun;Lim, Sang Moo;Woo, Sang-Keun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.17-21
    • /
    • 2016
  • Heterogeneity assessment of tumor in oncology is important for diagnosis of cancer and therapy. The aim of this study was performed assess heterogeneity tumor region in PET image using texture analysis. For assessment of heterogeneity tumor in PET image, we inserted sphere phantom in torso phantom. Cu-64 labeled radioisotope was administrated by 156.84 MBq in torso phantom. PET/CT image was acquired by PET/CT scanner (Discovery 710, GE Healthcare, Milwaukee, WI). The texture analysis of PET images was calculated using occurrence probability of gray level co-occurrence matrix. Energy and entropy is one of results of texture analysis. We performed the texture analysis in tumor, liver, and background. Assessment textural features of region-of-interest (ROI) in torso phantom used in-house software. We calculated the textural features of torso phantom in PET image using texture analysis. Calculated entropy in tumor, liver, and background were 5.322, 7.639, and 7.818. The further study will perform assessment of heterogeneity using clinical tumor PET image.

Detection of Microcalcification Using the Wavelet Based Adaptive Sigmoid Function and Neural Network

  • Kumar, Sanjeev;Chandra, Mahesh
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.703-715
    • /
    • 2017
  • Mammogram images are sensitive in nature and even a minor change in the environment affects the quality of the images. Due to the lack of expert radiologists, it is difficult to interpret the mammogram images. In this paper an algorithm is proposed for a computer-aided diagnosis system, which is based on the wavelet based adaptive sigmoid function. The cascade feed-forward back propagation technique has been used for training and testing purposes. Due to the poor contrast in digital mammogram images it is difficult to process the images directly. Thus, the images were first processed using the wavelet based adaptive sigmoid function and then the suspicious regions were selected to extract the features. A combination of texture features and gray-level co-occurrence matrix features were extracted and used for training and testing purposes. The system was trained with 150 images, while a total 100 mammogram images were used for testing. A classification accuracy of more than 95% was obtained with our proposed method.

Effects of Alloying Elements on the Damping Capacities and Mechanical Properties in 3.9%C Gray Cast Iron (3.9%C 회주철의 진동감쇠능 및 기계적 성질에 미치는 합금원소 첨가의 영향)

  • Kim, J.C.;Son, Y.C.;Han, D.W.;Baik, S.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.1
    • /
    • pp.47-54
    • /
    • 1997
  • Flake graphite cast irons with the high damping capacity have been used for the control of vibration and noise occuring in the members of various mechanical structures under vibrating conditions. However, the damping capacity which is morphological characteristics of graphite is one of the important factors in reducing the vibration and noise, but hardly any work has deal with this problem. Therefore, the authors have examined the damping capacity of various cast irons with alloying elements and studied the influences of the matrix, mechanical properties and morphological characteristics of graphite. The main results obtained are as follows: Effects of Ni on the damping capacities and mechanical properties are investigated in 3.9%C-0.3% Cu gray cast iron. At 0.2% Ni content, specific damping capacity showed the maximum value, and decreased with further increase in Ni content, Graphite continuity also showed same behavior. This indicates that the specific damping capacity has a close relation with graphite continuity. On the other hand, the damping capacity in pearlite matrix showed superior to that in ferrite. In contrast, with increasing the Ni content, both tensile strength and hardness increased due to the decrease of graphite length and eutectic cell size.

  • PDF

Analysis of characteristics for computer-aided diagnosis of breast ultrasound imaging (유방 초음파 영상의 컴퓨터 보조 진단을 위한 특성 분석)

  • Eum, Sang-hee;Nam, Jae-hyun;Ye, soo-young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.307-310
    • /
    • 2021
  • In the recent years, studies using Computer-Aided Diagnostics(CAD) have been actively conducted, such as signal and image processing technology using breast ultrasound images, automatic image optimization technology, and automatic detection and classification of breast masses. As computer diagnostic technology is developed, it is expected that early detection of cancer will proceed accurately and quickly, reducing health insurance and test ice for patients, and eliminating anxiety about biopsy. In this paper, a quantitative analysis of tumors was conducted in ultrasound images using a gray level co-occurrence matrix(GLCM) to experiment with the possibility of use for computer assistance diagnosis.

  • PDF

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.