• Title/Summary/Keyword: gray matrix

Search Result 180, Processing Time 0.022 seconds

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

A novel smart criterion of grey-prediction control for practical applications

  • Z.Y. Chen;Ruei-yuan Wang;Yahui Meng;Timothy Chen
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • The purpose of this paper is to develop a scalable grey predictive controller with unavoidable random delays. Grey prediction is proposed to solve problems caused by incorrect parameter selection and to eliminate the effects of dynamic coupling between degrees of freedom (DOFs) in nonlinear systems. To address the stability problem, this study develops an improved gray-predictive adaptive fuzzy controller, which can not only solve the implementation problem by determining the stability of the system, but also apply the Linear Matrix Inequality (LMI) law to calculate Fuzzy change parameters. Fuzzy logic controllers manipulate robotic systems to improve their control performance. The stability is proved using Lyapunov stability theorem. In this article, the authors compare different controllers and the proposed predictive controller can significantly reduce the vibration of offshore platforms while keeping the required control force within an ideal small range. This paper presents a robust fuzzy control design that uses a model-based approach to overcome the effects of modeling errors. To guarantee the asymptotic stability of large nonlinear systems with multiple lags, the stability criterion is derived from the direct Lyapunov method. Based on this criterion and a distributed control system, a set of model-based fuzzy controllers is synthesized to stabilize large-scale nonlinear systems with multiple delays.

Accuracy Assessment of Forest Degradation Detection in Semantic Segmentation based Deep Learning Models with Time-series Satellite Imagery

  • Woo-Dam Sim;Jung-Soo Lee
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.15-23
    • /
    • 2024
  • This research aimed to assess the possibility of detecting forest degradation using time-series satellite imagery and three different deep learning-based change detection techniques. The dataset used for the deep learning models was composed of two sets, one based on surface reflectance (SR) spectral information from satellite imagery, combined with Texture Information (GLCM; Gray-Level Co-occurrence Matrix) and terrain information. The deep learning models employed for land cover change detection included image differencing using the Unet semantic segmentation model, multi-encoder Unet model, and multi-encoder Unet++ model. The study found that there was no significant difference in accuracy between the deep learning models for forest degradation detection. Both training and validation accuracies were approx-imately 89% and 92%, respectively. Among the three deep learning models, the multi-encoder Unet model showed the most efficient analysis time and comparable accuracy. Moreover, models that incorporated both texture and gradient information in addition to spectral information were found to have a higher classification accuracy compared to models that used only spectral information. Overall, the accuracy of forest degradation extraction was outstanding, achieving 98%.

Radiomics Analysis of Gray-Scale Ultrasonographic Images of Papillary Thyroid Carcinoma > 1 cm: Potential Biomarker for the Prediction of Lymph Node Metastasis (Radiomics를 이용한 1 cm 이상의 갑상선 유두암의 초음파 영상 분석: 림프절 전이 예측을 위한 잠재적인 바이오마커)

  • Hyun Jung Chung;Kyunghwa Han;Eunjung Lee;Jung Hyun Yoon;Vivian Youngjean Park;Minah Lee;Eun Cho;Jin Young Kwak
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.1
    • /
    • pp.185-196
    • /
    • 2023
  • Purpose This study aimed to investigate radiomics analysis of ultrasonographic images to develop a potential biomarker for predicting lymph node metastasis in papillary thyroid carcinoma (PTC) patients. Materials and Methods This study included 431 PTC patients from August 2013 to May 2014 and classified them into the training and validation sets. A total of 730 radiomics features, including texture matrices of gray-level co-occurrence matrix and gray-level run-length matrix and single-level discrete two-dimensional wavelet transform and other functions, were obtained. The least absolute shrinkage and selection operator method was used for selecting the most predictive features in the training data set. Results Lymph node metastasis was associated with the radiomics score (p < 0.001). It was also associated with other clinical variables such as young age (p = 0.007) and large tumor size (p = 0.007). The area under the receiver operating characteristic curve was 0.687 (95% confidence interval: 0.616-0.759) for the training set and 0.650 (95% confidence interval: 0.575-0.726) for the validation set. Conclusion This study showed the potential of ultrasonography-based radiomics to predict cervical lymph node metastasis in patients with PTC; thus, ultrasonography-based radiomics can act as a biomarker for PTC.

An Efficient Face Region Detection for Content-based Video Summarization (내용기반 비디오 요약을 위한 효율적인 얼굴 객체 검출)

  • Kim Jong-Sung;Lee Sun-Ta;Baek Joong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.7C
    • /
    • pp.675-686
    • /
    • 2005
  • In this paper, we propose an efficient face region detection technique for the content-based video summarization. To segment video, shot changes are detected from a video sequence and key frames are selected from the shots. We select one frame that has the least difference between neighboring frames in each shot. The proposed face detection algorithm detects face region from selected key frames. And then, we provide user with summarized frames included face region that has an important meaning in dramas or movies. Using Bayes classification rule and statistical characteristic of the skin pixels, face regions are detected in the frames. After skin detection, we adopt the projection method to segment an image(frame) into face region and non-face region. The segmented regions are candidates of the face object and they include many false detected regions. So, we design a classifier to minimize false lesion using CART. From SGLD matrices, we extract the textual feature values such as Inertial, Inverse Difference, and Correlation. As a result of our experiment, proposed face detection algorithm shows a good performance for the key frames with a complex and variant background. And our system provides key frames included the face region for user as video summarized information.

Estrus Detection in Sows Based on Texture Analysis of Pudendal Images and Neural Network Analysis

  • Seo, Kwang-Wook;Min, Byung-Ro;Kim, Dong-Woo;Fwa, Yoon-Il;Lee, Min-Young;Lee, Bong-Ki;Lee, Dae-Weon
    • Journal of Biosystems Engineering
    • /
    • v.37 no.4
    • /
    • pp.271-278
    • /
    • 2012
  • Worldwide trends in animal welfare have resulted in an increased interest in individual management of sows housed in groups within hog barns. Estrus detection has been shown to be one of the greatest determinants of sow productivity. Purpose: We conducted this study to develop a method that can automatically detect the estrus state of a sow by selecting optimal texture parameters from images of a sow's pudendum and by optimizing the number of neurons in the hidden layer of an artificial neural network. Methods: Texture parameters were analyzed according to changes in a sow's pudendum in estrus such as mucus secretion and expansion. Of the texture parameters, eight gray level co-occurrence matrix (GLCM) parameters were used for image analysis. The image states were classified into ten grades for each GLCM parameter, and an artificial neural network was formed using the values for each grade as inputs to discriminate the estrus state of sows. The number of hidden layer neurons in the artificial neural network is an important parameter in neural network design. Therefore, we determined the optimal number of hidden layer units using a trial and error method while increasing the number of neurons. Results: Fifteen hidden layers were determined to be optimal for use in the artificial neural network designed in this study. Thirty images of 10 sows were used for learning, and then 30 different images of 10 sows were used for verification. Conclusions: For learning, the back propagation neural network (BPN) algorithm was used to successful estimate six texture parameters (homogeneity, angular second moment, energy, maximum probability, entropy, and GLCM correlation). Based on the verification results, homogeneity was determined to be the most important texture parameter, and resulted in an estrus detection rate of 70%.

Forensic Image Classification using Data Mining Decision Tree (데이터 마이닝 결정나무를 이용한 포렌식 영상의 분류)

  • RHEE, Kang Hyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.7
    • /
    • pp.49-55
    • /
    • 2016
  • In digital forensic images, there is a serious problem that is distributed with various image types. For the problem solution, this paper proposes a classification algorithm of the forensic image types. The proposed algorithm extracts the 21-dim. feature vector with the contrast and energy from GLCM (Gray Level Co-occurrence Matrix), and the entropy of each image type. The classification test of the forensic images is performed with an exhaustive combination of the image types. Through the experiments, TP (True Positive) and FN (False Negative) is detected respectively. While it is confirmed that performed class evaluation of the proposed algorithm is rated as 'Excellent(A)' because of the AUROC (Area Under Receiver Operating Characteristic Curve) is 0.9980 by the sensitivity and the 1-specificity. Also, the minimum average decision error is 0.1349. Also, at the minimum average decision error is 0.0179, the whole forensic image types which are involved then, our classification effectiveness is high.

A Novel Hyperspectral Microscopic Imaging System for Evaluating Fresh Degree of Pork

  • Xu, Yi;Chen, Quansheng;Liu, Yan;Sun, Xin;Huang, Qiping;Ouyang, Qin;Zhao, Jiewen
    • Food Science of Animal Resources
    • /
    • v.38 no.2
    • /
    • pp.362-375
    • /
    • 2018
  • This study proposed a rapid microscopic examination method for pork freshness evaluation by using the self-assembled hyperspectral microscopic imaging (HMI) system with the help of feature extraction algorithm and pattern recognition methods. Pork samples were stored for different days ranging from 0 to 5 days and the freshness of samples was divided into three levels which were determined by total volatile basic nitrogen (TVB-N) content. Meanwhile, hyperspectral microscopic images of samples were acquired by HMI system and processed by the following steps for the further analysis. Firstly, characteristic hyperspectral microscopic images were extracted by using principal component analysis (PCA) and then texture features were selected based on the gray level co-occurrence matrix (GLCM). Next, features data were reduced dimensionality by fisher discriminant analysis (FDA) for further building classification model. Finally, compared with linear discriminant analysis (LDA) model and support vector machine (SVM) model, good back propagation artificial neural network (BP-ANN) model obtained the best freshness classification with a 100 % accuracy rating based on the extracted data. The results confirm that the fabricated HMI system combined with multivariate algorithms has ability to evaluate the fresh degree of pork accurately in the microscopic level, which plays an important role in animal food quality control.

Retrospective Analysis of Cytopathology using Gray Level Co-occurrence Matrix Algorithm for Thyroid Malignant Nodules in the Ultrasound Imaging (갑상샘 악성결절의 초음파영상에서 GLCM 알고리즘을 이용한 세포병리 진단의 후향적 분석)

  • Kim, Yeong-Ju;Lee, Jin-Soo;Kang, Se-Sik;Kim, Changsoo
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.237-243
    • /
    • 2017
  • This study evaluated the applicability of computer-aided diagnosis by retrospective analysis of GLCM algorithm based on cytopathological diagnosis of normal and malignant nodules in thyroid ultrasound images. In the experiment, the recognition rate and ROC curve of thyroid malignant nodule were analyzed using 6 parameters of GLCM algorithm. Experimental results showed 97% energy, 93% contrast, 92% correlation, 92% homogeneity, 100% entropy and 100% variance. Statistical analysis showed that the area under the curve of each parameter was more than 0.947 (p = 0.001) in the ROC curve, which was significant in the recognition of thyroid malignant nodules. In the GLCM, the cut-off value of each parameter can be used to predict the disease through analysis of quantitative computer-aided diagnosis.

Preparation of Living Skin Equivalent by using the Contracted Collagen Lattice and Cultured Human Keratinocytes (수축된 콜라겐 격자와 배양된 각질형성세포를 이용한 피부 대용물질의 제조에 관한 연구)

  • Park, Jae-Gyeong;Jo, Geum-Cheol;Park, Ho-Cheol
    • Journal of Biomedical Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.51-62
    • /
    • 1993
  • An experimental study was performed for the preparation of living skin-equivalent by the using collagen gel contraction with human fibroblasts as neodermls and cultured human keratinocytes as neoderm is . The results were as follows ; 1) The rate of collagen gel contraction was dependent on the number of fibroblasts into the lattice and collagen contraction was progressed according to the increment of the number of the cells. 2) The rate of collagen gel contraction was progressed according to the decrement of the contraction of the collagen. 3) The rate of gel contraction was progressed according to the increment of serum concentration in the fixed concentration of the fibroblasts and collagen. 4) The lattice contraction was decreased according to the increment of the population doublings of the fibroblasts. 5) Macroscopically, the artificial dermis was gray white in color and tissue-like consistency and elas- ticity. 6) Microscopically, three dimensionally contracted artificial dermis showed more dense fibroblasts and its newly formed collagen fibrils in the matrix than one dimensionally contracted one. 7) Finally prepared skin-equivalent showed good attachment of living stratified keratinocytes to the dermal equivalent microscopically. It has been proposed that newly formed skin-equivalent is suitable for the graft of extensively and deeply burned patients. Shortening of the manufacturing period of skin-equivalent and development of conservation technique as a readily usable state are to be solved for our ongoing works.

  • PDF