• 제목/요약/키워드: gray level co-occurrence matrix

검색결과 76건 처리시간 0.025초

Cone-beam computed tomography texture analysis can help differentiate odontogenic and non-odontogenic maxillary sinusitis

  • Andre Luiz Ferreira Costa;Karolina Aparecida Castilho Fardim;Isabela Teixeira Ribeiro;Maria Aparecida Neves Jardini;Paulo Henrique Braz-Silva;Kaan Orhan;Sergio Lucio Pereira de Castro Lopes
    • Imaging Science in Dentistry
    • /
    • 제53권1호
    • /
    • pp.43-51
    • /
    • 2023
  • Purpose: This study aimed to assess texture analysis(TA) of cone-beam computed tomography (CBCT) images as a quantitative tool for the differential diagnosis of odontogenic and non-odontogenic maxillary sinusitis(OS and NOS, respectively). Materials and Methods: CBCT images of 40 patients diagnosed with OS (N=20) and NOS (N=20) were evaluated. The gray level co-occurrence (GLCM) matrix parameters, and gray level run length matrix texture (GLRLM) parameters were extracted using manually placed regions of interest on lesion images. Seven texture parameters were calculated using GLCM and 4 parameters using GLRLM. The Mann-Whitney test was used for comparisons between the groups, and the Levene test was performed to confirm the homogeneity of variance (α=5%). Results: The results showed statistically significant differences(P<0.05) between the OS and NOS patients regarding 3 TA parameters. NOS patients presented higher values for contrast, while OS patients presented higher values for correlation and inverse difference moment. Greater textural homogeneity was observed in the OS patients than in the NOS patients, with statistically significant differences in standard deviations between the groups for correlation, sum of squares, sum of entropy, and entropy. Conclusion: TA enabled quantitative differentiation between OS and NOS on CBCT images by using the parameters of contrast, correlation, and inverse difference moment.

컬러 프린터 영상의 모폴로지 특징과 지도 학습 모델 분류기를 활용한 위변조 지폐 판별 알고리즘 (Counterfeit Money Detection Algorithm based on Morphological Features of Color Printed Images and Supervised Learning Model Classifier)

  • 우귀희;이해연
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제2권12호
    • /
    • pp.889-898
    • /
    • 2013
  • 고성능 영상 장비의 대중화와 강력한 이미지 편집 소프트웨어의 출현으로 인해 지폐 및 유가 증권 등을 고품질로 위변조가 가능해졌다. 특히 컬러 레이저 프린터의 범용화로 인하여 화폐 위변조 범죄는 급격히 증가하고 있지만, 일반인이 이를 판별하는 비율은 낮은 수준이며 판별 기기도 고가이다. 본 연구에서는 범용 스캐너와 컴퓨터 시스템을 활용하여 화폐의 위변조를 탐지하기 위한 알고리즘을 제안하였다. 먼저 지폐의 인쇄방식과 다른 컬러 프린터의 인쇄 특징을 계산하기 위하여 모폴로지 기술과 명암도 동시 발생 행렬을 활용하였다. 그 후 계산된 특징들을 지도학습 모델 분류기에 적용하여 훈련을 시켰다. 이렇게 훈련된 분류기에 판별을 위한 지폐를 입력하고 위변조 여부에 대한 분석을 수행한다. 제안한 알고리즘의 성능을 분석하기 위하여 위변조 지폐의 판별률과 인쇄에 사용한 프린터의 판별률로 나누어 평가를 하였다. 또한 기존의 컬러 프린터 판별에 사용되었던 위너필터를 사용한 기술과 비교를 수행하였다. 그 결과 제안한 알고리즘이 위변조 지폐 식별에 있어서 91.92%, 위변조기기의 식별에 있어서 94.5% 이상 정확도를 보여 기존 컬러 프린터의 특징 추출 방법을 활용한 것보다 우수한 것으로 나타났다.

Sentinel-1 위성의 영상 분류 기법을 이용한 백두산 천지의 얼음 면적 변화 탐지 (Changes Detection of Ice Dimension in Cheonji, Baekdu Mountain Using Sentinel-1 Image Classification)

  • 박성재;엄진아;고보균;박정원;이창욱
    • 한국지구과학회지
    • /
    • 제41권1호
    • /
    • pp.31-39
    • /
    • 2020
  • 아시아에서 가장 큰 칼데라 호수인 천지는 해발 약 2250 m의 백두산 정상에 위치한다. 천지는 높은 해발고도 및 바다와 인접한 환경으로 인해 1년 중 6개월 정도가 눈과 얼음으로 뒤덮여 있다. 천지의 수원은 대부분 지하수로부터 유입되기 때문에 수온과 백두산의 화산활동이 밀접한 관련이 있다. 하지만 2000년대에 들어서며 백두산에 많은 화산활동이 관측되고 있다. 본 연구에서는 유럽우주국(European Space Agency: ESA)에서 제공하는 Sentinel-1 위성 영상자료를 활용하여 백두산의 겨울철 생성되는 얼음의 면적을 분석하였다. Sentinel-1 위성의 후방산란 영상에서 얼음의 면적을 산출하기 위해 질감 분석 기법을 활용하여 2개의 편파영상에서 20개의 Gray-Level Co-occurrence Matrix(GLCM) 레이어를 생성했다. 면적 산출에 사용된 방법은 GLCM 레이어를 Support Vector Machine (SVM) 알고리즘으로 분류하여 영상에서 얼음의 면적을 산출했다. 또한 산출된 면적은 삼지연 기상관측소에서 획득된 기온자료와 상관관계를 분석하였다. 본 연구는 본격적인 장기간의 시계열 분석에 앞서 얼음의 면적을 산출하는 새로운 방법에 대한 대안을 제시하는 근거로서 활용될 수 있을 것이다.

자궁경부암 진단을 위한 3차원 세포핵 질감 특성값 유의성 평가에 관한 연구 (Study on evaluating the significance of 3D nuclear texture features for diagnosis of cervical cancer)

  • 최현주;김태윤;;;최흥국
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권10호
    • /
    • pp.83-92
    • /
    • 2011
  • 본 연구의 목적은 세포핵의 3차원 염색질 질감 특성값이 암의 진행정도를 인식하는데 있어 유용한 특성값인지 평가하는데 있다. 특히, 제안한 방법이 악성이라고 진단된 세포진 도말 표본에서 정상으로 보이는 세포의 염색질 패턴에서의 미세한 차이를 인식할 수 있는지 살펴보고자 한다. 분류등급 정상(Normal), 저등급 편평 상피내 병변(LSIL, Low grade Squamous Intraepithelial Lesion), 고등급 편평 상피내 병변(HSIL, High grade Squamous Intraepithelial Lesion)에서 각각 100개씩의 세포 볼륨데이터로부터 3차원 GLCM(Gray Level Co occurrence Matrix)에 기반한 질감 특성값과 3차원 Wavelet 변환에 기반한 질감 특성값을 추출하고 분류기를 생성한 후 각 분류기에 대한 분류정확도를 비교하였으며, 2차원 세포진 영상에서의 세포핵 질감 특성값과 비교하기 위해 동일한 실험 볼륨데이터의 투영된 2차원 영상을 이용하여 같은 방법으로 2차원 세포핵 질감 특성값을 추출하고 분류기를 생성한 후 분류정확도를 비교하였다. 2차원 세포핵 질감 특성값과의 비교연구에서 3차원 세포핵 질감 특성값이 등급별 분류에 있어 보다 효율적인 것을 확인 할 수 있었으며 이는 3차원 염색질 질감 특성값이 자궁경부 세포의 정량화에 대한 정확성과 재현성을 개선할 수 있음을 의미한다.

원격탐사를 이용한 남해안의 적조영역 검출과 통계적 특징 분석에 관한 연구 (A Study on the Detection and Statistical Feature Analysis of Red Tide Area in South Coast Using Remote Sensing)

  • 서형수;이칠우
    • 정보처리학회논문지B
    • /
    • 제14B권2호
    • /
    • pp.65-70
    • /
    • 2007
  • 1990년대 이후 적조현상은 전 세계적으로 환경문제의 큰 관심이 되고 있으며 선진각국들은 해상용 위성을 이용하여 조기에 적조영역을 검출하는 연구를 진행하고 있다. 그러나 우리나라는 대부분의 해안이 굴곡이 심하고 연안에서 탁류가 많아 저해상도인 해상용 위성으로 소규모 적조 영역을 검출하기가 어렵다. 또한 기존의 적조영역 검출은 해상용 위성영상의 해색(sea color) 한 가지 특징에 의한 방법이 대부분이었다. 이처럼 해색과 같이 영상에서 소수의 특징을 가지고 적조영역을 검출한다는 것은 false negative 오류를 유발할 수 있다. 따라서 본 논문에서는 고정밀 육상용 위성의 남해안 영상에 대해 GLCM(Gray Level Co occurrence Matrix)의 질감 정보 6가지를 이용해서 질감정보를 취득하고 이 정보로부터 주성분 분석을 통해 차원을 축소하여 불필요한 성분을 제거한 후 2개의 주성분 누적 영상으로 변환시켰다. 실험결과 2개의 주성분 변환 누적 영상의 고유값은 94.6%였으며, 이를 해색 한 가지 만을 이용한 적조영역 영상 및 주성분을 모두 가지고 있는 영상들과 비교했을 때 가장 정확한 결과를 나타내었다. 그리고 검출된 적조영역을 질감에 대한 통계적 특성을 이용하여 탁류가 많은 연안 및 적조현상이 없는 바다와 비교하여 정량적으로 구분하였다.

UAV와 다시기 위성영상을 이용한 붕괴건물 탐지 (Detection of Collapse Buildings Using UAV and Bitemporal Satellite Imagery)

  • 정세정;이기림;윤예린;이원희;한유경
    • 한국측량학회지
    • /
    • 제38권3호
    • /
    • pp.187-196
    • /
    • 2020
  • 본 연구에서는 UAV (Unmanned Aerial Vehicle)와 PlanetScope 위성영상을 함께 이용한 붕괴건물 탐지를 수행하여 지표면에 위치한 특정 객체 탐지에 있어 이종 센서의 활용 가능성을 제시하였다. 이를 위해 지난해 4월 산불 피해로 붕괴된 20여 채의 건물들이 있는 곳을 실험장소로 선정하였다. 붕괴건물 탐지를 위해 1차적으로 객체기반 분할을 수행한 고해상도의 UAV 영상을 이용해 ExG (Excess Green), GLCM (Gray-Level Co-occurrence Matrix) 그리고 DSM (Digital Surface Model)과 같은 객체들의 특징(feature) 정보를 생성한 후 이를 붕괴건물 후보군 탐지에 이용하였다. 이 과정에서 탐지정확도 향상을 위해 PlanetScope를 이용한 변화탐지 결과를 함께 사용하였으며 이를 시드 화소(seed pixles)로 사용하여 붕괴건물 후보군에서 오탐지된 영역과 과탐지된 영역을 수정 및 보완하였다. 최종적인 탐지 결과는 참조 영상을 통해 그 성능을 분석하였으며 UAV 영상만을 이용한 붕괴건물 후보군 탐지 결과와 UAV 그리고 PlanetScope 영상을 함께 사용했을 때의 결과의 정확도를 비교, 분석하였다. 그 결과 UAV 영상만을 이용해 탐지한 붕괴건물의 정확도는 0.4867 F1-score를 가지며 UAV와 PlanetScope 영상을 함께 사용했을 때의 결과는 0.8064 F1-score로 그 값이 상승하였다. Kappa 지수 또한 0.3674에서 0.8225로 향상된 것을 확인할 수 있었다.

딥러닝 모델 기반 위성영상 데이터세트 공간 해상도에 따른 수종분류 정확도 평가 (The Accuracy Assessment of Species Classification according to Spatial Resolution of Satellite Image Dataset Based on Deep Learning Model)

  • 박정묵;심우담;김경민;임중빈;이정수
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1407-1422
    • /
    • 2022
  • 본 연구는 분류(classification)기반 딥러닝 모델(deep learning model)인 Inception과 SENet을 결합한 SE-Inception을 활용하여 수종분류를 수행하고 분류정확도를 평가하였다. 데이터세트의 입력 이미지는 Worldview-3와 GeoEye-1 영상을 활용하였으며, 입력 이미지의 크기는 10 × 10 m, 30 × 30 m, 50 × 50 m로 분할하여 수종 분류정확도를 비교·평가하였다. 라벨(label)자료는 분할된 영상을 시각적으로 해석하여 5개의 수종(소나무, 잣나무, 낙엽송, 전나무, 참나무류)으로 구분한 후, 수동으로 라벨링 작업을 수행하였다. 데이터세트는 총 2,429개의 이미지를 구축하였으며, 그중약 85%는 학습자료로, 약 15%는 검증자료로 활용하였다. 딥러닝 모델을 활용한 수종분류 결과, Worldview-3 영상을 활용하였을 때 최대 약 78%의 전체 정확도를 달성하였으며, GeoEye-1영상을 활용할 때 최대 약 84%의 정확도를 보여 수종분류에 우수한 성능을 보였다. 특히, 참나무류는 입력 이미지크기에 관계없이 F1은 약 85% 이상의 높은 정확도를 보였으나, 소나무, 잣나무와 같이 분광특성이 유사한 수종은 오분류가 다수 발생하였다. 특정 수종에서 위성영상의 분광정보 만으로는 특징량 추출에 한계가 있을 수 있으며, 식생지수, Gray-Level Co-occurrence Matrix (GLCM) 등 다양한 패턴정보가 포함된 이미지를 활용한다면 분류 정확도를 개선할 수 있을 것으로 판단된다.

A Novel System for Detecting Adult Images on the Internet

  • Park, Jae-Yong;Park, Sang-Sung;Shin, Young-Geun;Jang, Dong-Sik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.910-924
    • /
    • 2010
  • As Internet usage has increased, the risk of adolescents being exposed to adult content and harmful information on the Internet has also risen. To help prevent adolescents accessing this content, a novel detection method for adult images is proposed. The proposed method involves three steps. First, the Image Of Interest (IOI) is extracted from the image background. Second, the IOI is distinguished from the segmented image using a novel weighting mask, and it is determined to be acceptable or unacceptable. Finally, the features (color and texture) of the IOI or original image are compared to a critical value; if they exceed that value then the image is deemed to be an adult image. A Receiver Operating Characteristic (ROC) curve analysis was performed to define this optimal critical value. And, the textural features are identified using a gray level co-occurrence matrix. The proposed method increased the precision level of detection by applying a novel weighting mask and a receiver operating characteristic curve. To demonstrate the effectiveness of the proposed method, 2850 adult and non-adult images were used for experimentation.

Framework for Content-Based Image Identification with Standardized Multiview Features

  • Das, Rik;Thepade, Sudeep;Ghosh, Saurav
    • ETRI Journal
    • /
    • 제38권1호
    • /
    • pp.174-184
    • /
    • 2016
  • Information identification with image data by means of low-level visual features has evolved as a challenging research domain. Conventional text-based mapping of image data has been gradually replaced by content-based techniques of image identification. Feature extraction from image content plays a crucial role in facilitating content-based detection processes. In this paper, the authors have proposed four different techniques for multiview feature extraction from images. The efficiency of extracted feature vectors for content-based image classification and retrieval is evaluated by means of fusion-based and data standardization-based techniques. It is observed that the latter surpasses the former. The proposed methods outclass state-of-the-art techniques for content-based image identification and show an average increase in precision of 17.71% and 22.78% for classification and retrieval, respectively. Three public datasets - Wang; Oliva and Torralba (OT-Scene); and Corel - are used for verification purposes. The research findings are statistically validated by conducting a paired t-test.

수심을 고려한 사이드 스캔 소나 자료의 보정 및 해저면 분류를 위한 영상분할 (Depth-based Correction of Side Scan Sonal Image Data and Segmentation for Seafloor Classification)

  • 서상일;김학일;이광훈;김대철
    • 대한원격탐사학회지
    • /
    • 제13권2호
    • /
    • pp.133-150
    • /
    • 1997
  • 본 논문의 목적은 사이드 스캔 소나 자료를 이용하여 해저면의 지질을 분류하는 알고리 즘을 제안하는 것이다. 사이드 스캔 소나 시스템에서 획득된 수치 자료에 대하여 탐사선의 항해 자료를 근거로 모자이킹을 수행하고 2차원 영상 자료를 생성하여, 평활화(Smoothing)와 같은 영 상 처리기법을 적용하여 보간을 수행하였다. 그리고, 모자익 영상의 텍스쳐 특성을 이용하여 영상 분할(Segmentation)을 실시하였다. 토우-휘시(Tow-fish)의 좌우현 센서의 특성 차이로 발생하는 좌우현음압의 차이와 센서에서 먼 곳에서 온 신호일 수록 음압이 작기 때문에 음압 자료의 보정 이 필수적이다. 본 논문에서는 토우-휘시 고도별 평균을 이용한 보정치로 음압 자료를 보정하였 고, 보정된 음압 자료로 모자익한 결과와 보정하지 않은 음압 자료를 보정하였고, 보정된 음압 자 료로 모자익한 결과와 보정하지 않은 음압 자료로 모자익한 결과를 비교하여 음압 보정된 영상의 질이 향상됨을 확인하였다. 영상의 분할 방법은 그레이 레벨 동시발생 행렬(Gray Level Co-occurrence Matrix)을 이용한 텍스쳐 특성을 기초로 그레이 레벨 최대 발생 특징식을 제안하 고, 그 결과를 제시하였다.