• Title/Summary/Keyword: gravity load

Search Result 373, Processing Time 0.021 seconds

Effects of Load Center of Gravity and Feet Positions on Peak EMG Amplitude at Low Back Muscles While Lifting Heavy Materials (중량물 들기 작업시 물체 무게중심 및 발의 위치가 허리 근육의 최대 EMG 진폭에 미치는 영향)

  • Kim, Sun-Uk;Han, Seung Jo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.3
    • /
    • pp.257-264
    • /
    • 2012
  • Objectives: This study's aims were to evaluate the effects of load center of gravity within an object lifted and feet placements on peak EMG amplitude acting on bilateral low back muscle groups, and to suggest adequate foot strategies with an aim to reducing low back pain incidence while lifting asymmetric load. Methods: The hypotheses that asymmetric load imposes more peak EMG amplitude on low back muscles contralateral to load center of gravity than symmetric load and maximum peak EMG amplitude out of bilateral ones can be relieved by locating one foot close to load center of gravity in front of the other were established based on biomechanics including safety margin model and previous researches. 11 male subjects were required to lift symmetrically a 15.8kg object during 2sec according to each conditions; symmetric load-parallel feet (SP), asymmetric load-parallel feet (AP), asymmetric load-one foot contralateral to load center of gravity in front of the other (AL), and asymmetric load-one foot ipsilateral to load center of gravity in front of the other (AR). Bilateral longissimus, iliocostalis, and multifidus on right and left low back area were selected as target muscles, and asymmetric load had load center of gravity 10cm deviated to the right from the center in the frontal plane. Results: Greater peak EMG amplitude in left muscle group than in right one was observed due to the effect of load center of gravity, and mean peak EMG amplitudes on both sides was not affected by load center of gravity because of EMG balancing effect. However, the difference of peak EMG amplitudes between both sides was significantly affected by it. Maximum peak EMG amplitude out of both sides and the difference of peak EMG amplitude between both sides could be reduced with keeping one foot ipsilateral to load center of gravity in front of the other while lifting asymmetric load. Conclusions: It was likely that asymmetric load lead to the elevated incidence of low back pain in comparison with symmetric load based on maximum peak EMG amplitude occurrence and greater imbalanced peak EMG amplitude between both sides. Changing feet positions according to the location of load center of gravity was suggested as one intervention able to reduce the low back pain incidence.

IMPROVED EARTHQUAKE RESISTANT DESIGN OF MULTISTORY BUILDING FRAMES (고층건물 내진설계기법의 개선)

  • Lee, Dong-Guen-;Lee, Seok-Youn-
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.72-78
    • /
    • 1991
  • An improved procedure for earthquake resistant design of multistory building structures is proposed in this study. The effect of gravity load on seismic response of structures is evaluated through nonlinear dynamic analyses of a single story example structure. The presence of gravity load tends to initiate plastic hinge formation in earlier stage of a strong earthquake. However, the effect of gravity load seems to disapper as ground motion is getting stronger. And one of shortcomings in current earthquake resistant codes is overestimation of gravity load effects when earthquake load is applied at the same time so that it may leads to less inelastic deformation or structural damage in upper stories, and inelastic deformation is increased in lower stories. Based on these observation, an improved procedure for earthquake resistant design is derived by reducing the factor for gravity load and inceasing that for seismic load. Structures designed by the proposed design procedure turned out to have increased safety and stability against strong earthquakes.

  • PDF

Improving the linear flexibility distribution model to simultaneously account for gravity and lateral loads

  • Habibi, AliReza;Izadpanah, Mehdi
    • Computers and Concrete
    • /
    • v.20 no.1
    • /
    • pp.11-22
    • /
    • 2017
  • There are two methods to model the plastification of members comprising lumped and distributed plasticity. When a reinforced concrete member experiences inelastic deformations, cracks tend to spread from the joint interface resulting in a curvature distribution; therefore, the lumped plasticity methods assuming plasticity is concentrated at a zero-length plastic hinge section at the ends of the elements, cannot model the actual behavior of reinforced concrete members. Some spread plasticity models including uniform, linear and recently power have been developed to take extended inelastic zone into account. In the aforementioned models, the extended inelastic zones in proximity of critical sections assumed close to connections are considered. Although the mentioned assumption is proper for the buildings simply imposed lateral loads, it is not appropriate for the gravity load effects. The gravity load effects can influence the inelastic zones in structural elements; therefore, the plasticity models presenting the flexibility distribution along the member merely based on lateral loads apart from the gravity load effects can bring about incorrect stiffness matrix for structure. In this study, the linear flexibility distribution model is improved to account for the distributed plasticity of members subjected to both gravity and lateral load effects. To do so, a new model in which, each member is taken as one structural element into account is proposed. Some numerical examples from previous studies are assessed and outcomes confirm the accuracy of proposed model. Also comparing the results of the proposed model with other spread plasticity models illustrates glaring error produced due to neglecting the gravity load effects.

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

Influence of Earlywood, Latewood, and Nail Driving Position on Nail Withdrawal Load Behavior

  • Cha, Jae-Kyung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.1-5
    • /
    • 1998
  • Nail withdrawal tests were conducted on clear wood of radiata pine. Nails were driven into the earlywood and latewood zones of each specimen, and nail withdrawal tests were then performed. Nail withdrawal loads were strongly dependent on earlywood and latewood and on nail position. The average load values for nail withdrawal in both the tangential and longitudinal directions were higher for latewood than for earlywood. Linear and nonlinear regression analyses of nail withdrawal load with specific gravity showed no discernible differences. Good correlations were obtained between nail withdrawal load and specific gravity.

  • PDF

Load-displacement Response of Gravity Load Designed Reinforced Concrete Moment Frames with Various Height of Masonry Infill Walls (조적채움벽 높이에 따른 철근콘크리트 중력골조의 하중-변위 응답)

  • Han, Ji Min;Lee, Chang Seok;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.1
    • /
    • pp.39-47
    • /
    • 2020
  • Lightly reinforced concrete (RC) moment frames may suffer significant damage during large earthquake events. Most buildings with RC moment frames were designed without considering seismic loads. The load-displacement response of gravity load designed frames could be altered by masonry infill walls. The objective of this study is to investigate the load-displacement response of gravity load designed frames with masonry infill walls. For this purpose, three-story gravity load designed frames with masonry infill walls were considered. The masonry infilled RC frames demonstrated larger lateral strength and stiffness than bare RC frames, whereas their drift capacity was less than that of bare frames. A specimen with a partial-height infill wall showed the least drift capacity and energy dissipation capacity. This specimen failed in shear, whereas other specimens experienced a relatively ductile failure mode (flexure-shear failure).

Case Studies for Anlayzing Effects of Outriggers on Gravity Load Managements (아웃리거의 중력하중 조절 효과 분석을 위한 사례연구)

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.255-266
    • /
    • 2010
  • In high-rise buildings, an outrigger system is frequently used as a resisting system for lateral loads. Since the outriggers tie exterior columns and an interior core, exterior columns can participate in the lateral load resisting system and the structural resistance capacity can be increased. However, the outriggers contribute for controlling gravity loads as well as lateral loads. The flows of gravity loads can be changed by the members of outriggers, for the purposes of transferring loads to mega-columns, distributing gravity loads equally among vertical members of columns, walls, or piles, minimizing differential settlements in a foundation system, and so on. In this study, by computational structural analyses of high-rise buildings over 100 floors, the effects of outriggers on controlling gravity loads are analyzed. Analyses for 3-dimensional models with or without outrigger members are performed, and then the gravity load distributions in columns and piles and foundation settlements are analyzed. Also, the effects of outriggers on gravity load controls during construction stages as well as after construction are included.

A Study on a Gravity Compensator for the Robot Arm (로봇팔을 위한 중력보상기 연구)

  • Choi, Hyeung-Sik;Kim, Dong-Ho;Her, Jea-Gwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.226-232
    • /
    • 2009
  • In this paper, a design and analysis of a gravity compensator which is a new device to reduce the joint torque of robots caused due to gravity is presented. Joints of all robots are loaded by large torques due to gravity. By applying the gravity compensator to the robot joints, the load torques applied to the robot joints are reduced by the repulsive force of the gravity compensator such that the size of the joint actuation motor can be reduced. In this paper, the structure and force relation of the gravity compensator are analyzed. The superior performance of the proposed gravity compensator is verified through experiments which measure the joint motor current caused by the load applied to the robot link.

Comparative research on gravity load simulation devices for structural seismic tests based on FEA

  • Yonglan Xie;Songtao Yan;Yurong Wang;Shuwei Song
    • Structural Monitoring and Maintenance
    • /
    • v.11 no.3
    • /
    • pp.235-246
    • /
    • 2024
  • Structural seismic tests usually need to simulate the gravity load borne by the structure, the gravity load application devices should keep the force value and direction unchanged, and can adapt to the structural deformation. At present, there are two main ways to simulate gravity load in laboratory: roller group and prestress. However, there are few differential analysis between these two ways in the existing experimental studies. In this paper, the simulation software ABAQUS is used to simulate the static pushover analysis of reinforced concrete column and frame, which are the most common models in structural seismic tests. The results show that the horizontal restoring force of the model using prestressed loading method is significantly greater than roller group, and the difference between the two will increase with the increase of the horizontal deformation. The reason for the difference is that the prestressed loading method does not take the adverse effects of gravity second-order effect (P-Delta effect) into account. Therefore, the restoring force obtained under prestressed loading method should be corrected and the additional shear force caused by P-Delta effect should be deducted. After correction, the difference of restoring force between the two gravity load application methods is significantly reduced (when storey-drift is 1/550, the relative error is within 1%; and when storey-drift is 1/50, the relative error is about 3%). The research results of this research can provide reference for the selection and data processing of gravity load simulation devices in structural seismic tests.

Comparison of Peak EMG Amplitude on Low Back Muscles according to Asymmetric Load Center of Gravity and Trunk Lateral Bending while Lifting (들기 작업시 중량물의 비대칭 무게중심 및 상체 옆으로 기울임에 따른 허리근육의 Peak EMG 진폭 비교)

  • Han, Seung Jo;Kim, Sun-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4629-4635
    • /
    • 2012
  • This study was aimed at the relationship between peak EMG amplitude on low back muscles acting on L5/S1 and load center of gravity, trunk lateral bending while lifting an object. Musculoskeletal disorders including low back pain can occur even when handling heavy objects only once as well as when doing non-heavy materials repeatedly. 11 male subjects with average 23 age were required to lift a 15.8kg object symmetrically three times. Peak EMG amplitudes on 6 muscles related with L5/S1 were recorded and analyzed. The lifting conditions consisted of lifting symmetric load with no trunk lateral bending, asymmetric load with no trunk lateral bending, and asymmetric load with trunk lateral bending to the load center of gravity within an object. The results showed that peak EMG amplitude on back muscles contralateral to load center of gravity was observed greater in comparison with the symmetric load. Also, in case of lifting asymmetric load the posture with trunk lateral bending increased peak EMG amplitude on muscles contralateral to load center of gravity more than with no trunk lateral bending. This research can be used as one administrative intervention in order to reduce the low back pain incidence with suggesting workers that they keep the trunk not bending to load center of gravity if possible when lifting a heavy asymmetric object.