• Title/Summary/Keyword: gravity field

Search Result 412, Processing Time 0.031 seconds

Development of Precise Lunar Orbit Propagator and Lunar Polar Orbiter's Lifetime Analysis

  • Song, Young-Joo;Park, Sang-Young;Kim, Hae-Dong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.2
    • /
    • pp.97-106
    • /
    • 2010
  • To prepare for a Korean lunar orbiter mission, a precise lunar orbit propagator; Yonsei precise lunar orbit propagator (YSPLOP) is developed. In the propagator, accelerations due to the Moon's non-spherical gravity, the point masses of the Earth, Moon, Sun, Mars, Jupiter and also, solar radiation pressures can be included. The developed propagator's performance is validated and propagation errors between YSPOLP and STK/Astrogator are found to have about maximum 4-m, in along-track direction during 30 days (Earth's time) of propagation. Also, it is found that the lifetime of a lunar polar orbiter is strongly affected by the different degrees and orders of the lunar gravity model, by a third body's gravitational attractions (especially the Earth), and by the different orbital inclinations. The reliable lifetime of circular lunar polar orbiter at about 100 km altitude is estimated to have about 160 days (Earth's time). However, to estimate the reasonable lifetime of circular lunar polar orbiter at about 100 km altitude, it is strongly recommended to consider at least $50\;{\times}\;50$ degrees and orders of the lunar gravity field. The results provided in this paper are expected to make further progress in the design fields of Korea's lunar orbiter missions.

Comments on Gravity Reduction and Gravity Anomaly (중력 보정과 중력 이상에 대한 이해)

  • Park, Yeong-Sue;Lim, Mu-Taek;Rim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.171-175
    • /
    • 2006
  • Gravity reduction and Bouguer anomaly are frequently misunderstood by many geoscientists as follows; the observed gravity is reduced to a common datum plane, so that gravity effects by all materials above the datum is removed, therefore, Bouguer anomaly is located on the datum plane. In reality, Bouguer anomaly does not lie on a common datum plane, but is difference between observed gravity and reference gravity at the actual point of measurement. Commonly used gravity reduction formulas are approximate formulas. Here, we introduce complete formulas, and suggest to use them for more accurate results. We also suggest to use not the geoid but the reference ellipsoid as the vertical datum.

A Study on the Process Capability Analysis of MIM Product (금속분말 사출성형 제품의 공정능력분석에 관한 연구)

  • Choi, Byung-Ky;Lee, Dong-Gil;Choi, Byung-Hui
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Metal Injection Molding (MIM) is attractive because it produces consistent, complex-geometry components for high-volume, high-strength, and high-performance applications. Also MIM using in optical communication field, display field, and semi-conductor field is a cost-effective alternative to metal machining or investment casting parts. It offers tremendous single-step parts consolidation potential and design flexibility. The objective of this paper is to study the suitability of design, flow analysis, debinding and sinterin processes, and capability analysis. The suitable injection conditions were 0.5~1.5 second filling time, 11.0~12.5 MPa injection pressure derived from flow analysis. The gravity of the product is measured after debinding an sintering. The maximum and minimum gravity levels are 7.5939 and 7.5097. the average and standard deviation are 7.5579 and 0.0122; when converted into density, the figure stands at 98.154%. According to an analysis of overall capacity, PPM total, which refers to defect per million opportunities(DPMO), stands at 166,066.3 Z.Bench-the sum of defect rates exceeding the actual lowest and highest limits-is 0.97, which translates into the good quality rate of around 88.4% and the sigma level of 2.47.

The Effects of Moon's Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

  • Rahoma, Walid A.;Abd El-Salam, Fawzy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.285-294
    • /
    • 2014
  • The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth's satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can't be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

Tectonic Link between NE China and Korean Peninsula, Revealed by Interpreting CHAMP Satellite Magnetic and GRACE Satellite Gravity Data

  • Choi, Sungchan;Oh, Chang-Whan;Luehr, Herrmann
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.209-217
    • /
    • 2006
  • The major continental blocks in NE-Asia are the North China Block and the South China Blo, which have collided, starting from the Korean peninsula. The suture zone in NE China between two blocks is well defined from the QinIing-Dabie-Orogenic Belt to the Jiaodong (Sulu) Belt by the geological and geophysical interpretation. The discovery of high pressure metamorphic rocks in the Hongsung area of the Korean peninsula can be used to estimate the suture zone. This indicates that the suture zone in the Jiaodong Belt might be extended to Hongsung area. However, due to the lack of geological and geophysical data over the Yellow sea, the extension of the suture zone to the Korean peninsula across the Yellow Sea is obscure. To find out the tectonic relationship between NE China and the Korean peninsula it is necessary to complete U-ie homogeneous geophysical dataset of NE Asia, which can be provided by satellite observations. The CHAMP lithospheric magnetic field (MF3) and CHAMP-GRACE gravity field, combined with surface measured data, allow a much more accurate in-ference of tectonic structures than previously available. The CHAMP magnetic anomaly map reveals significant magnetic lows in the Yellow Sea near Nanjing and Hongsung, where are characterized by gravity highs on U-ie CHAMP-GRACE gravity anomaly map. To evaluate the depth and location of poten-tial field anomaly causative bodies, the Euler Deconvolution method is implemented. After comparing the two potential field solutions with the simplified geological map containing tectonic lines and the distribution of earthquakes epicenters, it is found that the derived structure boundaries of both are well coincident with the seismic activities as well as with the tectonic lineaments. The interpretation of the CHAMP satellite magnetic and GRACE satellite gravity datasets reveal two tectonic boundaries in U-ie Yellow Sea and the Korean peninsula, indicating U-ie norttiern and southern margins of the suture zone between the North China Block and the South China Block. The former is extended from the Jiaodong Belt in East China to the Imjingang Belt on the Korean peninsula, the later from Nanjing, East China, to Hongsung, the Korean peninsula. The tectonic movement in or near the suture zone might be responsible for the seismic activities in the western region of the Korean Peninsula and the development of the Yellow Sea sedimentary basin.

  • PDF

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Density Measurement Comparisons of Specific Gravity Meter and Gas Chromatography in the Field (실제조건에서 기준 밀도계와 가스 분석기에 의한 밀도 측정 결과 비교)

  • Lee, Kang-Jin;Her, Jae-Young;Ha, Young-Cheol
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.90-96
    • /
    • 1999
  • In contracts for sales of natural gas between sellers and buyers, it is not suncient to only measure a volumetric quantity of gas in flowing conditions in metering station. Therefore the measured volumetric quantity must be converted to that of reference conditions. The density of the natural gas required in such a calculation can be measured directly or estimated from the equation of sate or any other experimental methods. The specific gravity meter is the apparatus used to measure the density of fluids under the reference conditions and it can be widely used in industrial areas, especially in massive flow rate natural gas industry. This study has been carried out in an attempt to improve measurement accuracy of natural gas flow rate calculation, providing the adequate installation and proper operation conditions of specific gravity meter. The test results are 1) the density measurement errors in case of using methane and standard gas as calibration gases are smaller than using methane and nitrogen gas, 2) the periodical calibration to maintain accurate density measurements is essential, and 3) the specific gravity meter is sensitive to changes of environmental conditions, especially environmental temperature surrounding the specific gravity meter.

  • PDF

An Experimental Study on the Characteristic of Compressive Strength in Lightweight Mortar Using Foam Agent (기포제 혼입 경량모르타르의 압축강도 특성에 관한 실험적 연구)

  • Yoo Byung Il;Lee Sung Bok;Jang Ui Soon;Lee Han Seung;Yeon Gyu Bong;Bae Kyu Woong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.684-687
    • /
    • 2004
  • The purpose of this study is to obtain basic data on the properties of the development of lightweight mortar contained foam agent for various applications in the field. In the experiment, as a result of measurement the specific gravity by the change of the W/C and the foam agent into a variable and measuring the compressive strength of mortar, specific gravity checked that a compressive strength therefore increased. Mortar is using lightweight foam agent having the change of specific gravity, the water cement ratio $50\%,\;40\%,\;30\%$. This paper present extensive data on the characteristics of strength of the lightweight mortar and also presents the mechanical characteristics of the lightweight according to specific gravity.

  • PDF

Effect of heat source and gravity on a fractional order fiber reinforced thermoelastic medium

  • Jain, Kavita;Kalkal, Kapil Kumar;Deswal, Sunita
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.215-226
    • /
    • 2018
  • In this article, the theory of fractional order two temperature generalized thermoelasticity is employed to study the wave propagation in a fiber reinforced anisotropic thermoelastic half space in the presence of moving internal heat source. The whole space is assumed to be under the influence of gravity. The surface of the half-space is subjected to an inclined load. Laplace and Fourier transform techniques are employed to solve the problem. Expressions for different field variables in the physical domain are derived by the application of numerical inversion technique. Physical fields are presented graphically to study the effects of gravity and heat source. Effects of time, reinforcement, fractional parameter and inclination of load have also been reported. Results of some earlier workers have been deduced from the present analysis.

Testing Gravity with Cosmic Shear Data from the Deep Lens Survey

  • Sabiu, Cristiano G.;Yoon, Mijin;Jee, M. James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.62.2-62.2
    • /
    • 2018
  • From the gaussian, near scale-invariant density perturbations observed in the CMB to the late time clustering of galaxies, CDM provides a minimal theoretical explanation for a variety of cosmological data. However accepting this explanation, requires that we include within our cosmic ontology a vacuum energy that is ~122 orders of magnitude lower than QM predictions, or alternatively a new scalar field (dark energy) that has negative pressure. Alternatively, modifications to Einstein's General Relativity have been proposed as a model for cosmic acceleration. Recently there have been many works attempting to test for modified gravity using the large scale clustering of galaxies, ISW, cluster abundance, RSD, 21cm observations, and weak lensing. In this work, we compare various modified gravity models using cosmic shear data from the Deep Lens Survey as well as data from CMB, SNe Ia, and BAO. We use the Bayesian Evidence to quantify the comparison robustly, which naturally penalizes complex models with weak data support. In this poster we present our methodology and preliminary constraints on f(R) gravity.

  • PDF