• Title/Summary/Keyword: gravity center

Search Result 886, Processing Time 0.024 seconds

Image Watermarking Robust to Geometrical Attacks based on Normalization using Invariant Centroid (불변의 무게중심을 이용한 영상 정규화에 기반한 기하학적 공격에 강인한 워터마킹)

  • 김범수;최재각
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.3
    • /
    • pp.243-251
    • /
    • 2004
  • This paper proposes a digital image watermarking scheme, which is robust to geometrical attacks. The method improves image normalization-based watermarking (INW) technique that doesn't effectively deal with geometrical attacks with cropping. Image normalization is based on the moments of the image, however, in general, geometrical attacks bring the image boundary cropping and the moments are not preserved original ones. Thereafter the normalized images of before and after are not same form, i.e., the synchronization is lost. To solve the cropping problem of INW, Invariant Centroid (IC) is proposed in this paper. IC is a gravity center of a central area on a gray scale image that is invariant although an image is geometrically attacked and the only central area, which has less cropping possibility by geometrical attacks, is used for normalization. Experimental results show that the IC-based method is especially robust to geometrical attack with cropping.

FUZZY LOGIC KNOWLEDGE SYSTEMS AND ARTIFICIAL NEURAL NETWORKS IN MEDICINE AND BIOLOGY

  • Sanchez, Elie
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.1
    • /
    • pp.9-25
    • /
    • 1991
  • This tutorial paper has been written for biologists, physicians or beginners in fuzzy sets theory and applications. This field is introduced in the framework of medical diagnosis problems. The paper describes and illustrates with practical examples, a general methodology of special interest in the processing of borderline cases, that allows a graded assignment of diagnoses to patients. A pattern of medical knowledge consists of a tableau with linguistic entries or of fuzzy propositions. Relationships between symptoms and diagnoses are interpreted as labels of fuzzy sets. It is shown how possibility measures (soft matching) can be used and combined to derive diagnoses after measurements on collected data. The concepts and methods are illustrated in a biomedical application on inflammatory protein variations. In the case of poor diagnostic classifications, it is introduced appropriate ponderations, acting on the characterizations of proteins, in order to decrease their relative influence. As a consequence, when pattern matching is achieved, the final ranking of inflammatory syndromes assigned to a given patient might change to better fit the actual classification. Defuzzification of results (i.e. diagnostic groups assigned to patients) is performed as a non fuzzy sets partition issued from a "separating power", and not as the center of gravity method commonly employed in fuzzy control. It is then introduced a model of fuzzy connectionist expert system, in which an artificial neural network is designed to build the knowledge base of an expert system, from training examples (this model can also be used for specifications of rules in fuzzy logic control). Two types of weights are associated with the connections: primary linguistic weights, interpreted as labels of fuzzy sets, and secondary numerical weights. Cell activation is computed through MIN-MAX fuzzy equations of the weights. Learning consists in finding the (numerical) weights and the network topology. This feed forward network is described and illustrated in the same biomedical domain as in the first part.

  • PDF

Kinematics of filament stretching in dilute and concentrated polymer solutions

  • McKinley, Gareth H.;Brauner, Octavia;Yao, Minwu
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2001
  • The development of filament stretching extensional rheometers over the past decade has enabled the systematic measurement of the transient extensional stress growth in dilute and semi-dilute polymer solutions. The strain-hardening in the extensional viscosity of dilute solutions overwhelms the perturbative effects of capillarity, inertia & gravity and the kinematics of the extensional deformation become increasingly homogeneous at large strains. This permits the development of a robust open-loop control algorithm for rapidly realizing a deformation with constant stretch history that is desired for extensional rheometry. For entangled fluids such as concentrated solutions and melts the situation is less well defined since the material functions are governed by the molecular weight between entanglements, and the fluids therefore show much less pronounced strain-hardening in transient elongation. We use experiments with semi-dilute/entangled and concentrated/entangled monodisperse polystyrene solutions coupled with time-dependent numerical computations using nonlinear viscoelastic constitutive equations such as the Giesekus model in order to show that an open-loop control strategy is still viable for such fluids. Multiple iterations using a successive substitution may be necessary, however, in order to obtain the true transient extensional viscosity material function. At large strains and high extension rates the extension of fluid filaments in both dilute and concentrated polymer solutions is limited by the onset of purely elastic instabilities which result in necking or peeling of the elongating column. The mode of instability is demonstrated to be a sensitive function of the magnitude of the strain-hardening in the fluid sample. In entangled solutions of linear polymers the observed transition from necking instability to peeling instability observed at high strain rates (of order of the reciprocal of the Rouse time for the fluid) is directly connected to the cross-over from a reptative mechanism of tube orientation to one of chain extension.

  • PDF

A Comparision of Flick Shooting Motion in Penalty Corner between High School and National Players in Field Hockey (하키 페널티 코너 시 고등학교 선수와 국가대표 선수간의 플릭슈팅 동작 비교)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Ki-Un
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.3
    • /
    • pp.499-508
    • /
    • 2009
  • The purpose of this study was to compare and analyze flick shooting motion in penalty corner between high school players and national players in field hockey. Five high school players and six national players participated in this study. The 3D kinematic data were collected for each subject performing the penalty corner stroke. The results of the study were as follows: 1) The national players had higher stick head and ball velocity than the high school players. 2) The forward length between ball and support foot during ball catching with stick head was longer in the national players than the high school players. 3) At the Z axis of the E5 event, the center of gravity of the national players was lower than that of the high school players. 4) At the Z axis of the E5 event, left hip angle of the national players was lower than that of the high school players. 5) The national players had longer drag length of ball than the high school players. 6) The national players had higher hand and lower arm angular momentum than the high school players.

Comparison of Kinematic Variables of the Elite Woman's 100m Hurdler (엘리트 여자 100m 허들선수들의 운동학적 변인 비교)

  • Ryu, Jae-Kyun;Chang, Jae-Kwan;Yeo, Hong-Chul;Lim, Jung-Woo
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.149-156
    • /
    • 2007
  • The purpose of this study was to compare the world class women's hurdlers with kinematic variables Lee Yeon-Kyoung's in the 100m hurdle. Among korea elite female hurdler, Lee Yeon-Kyoung was participated as a subject. Eight JVC video cameras(GR-HD1KR) were used to film the performance of Lee Yeon-Kyoung at a frame rate of 60fields/s. The real-life three-dimensional coordinate data of digitized body landmarks were smoothed using a fourth order Butterworth low pass recursive digital filter with an estimated optimum cutoff frequency of 7.4Hz. After analyzing and comparing Lee Yeon Kyung's kinematic variables with the world top class hurdlers in the woman's 100m hurdle run, the following conclusions were obtained. 1. Lee should be able to increase the speed with over 5.4m/s from start to first hurdle and then maintain the speed range from 8.33m/s to 8.67m/s until 10th hurdle. Lee should have to maintain the speed with 8.51m/s from 10th hurdle to finish line. 2. Lee has to reach her maximum running speed at 5th hurdle and then has to shorten running time with 0.5sec between hurdles. 3. Lee should be able to run around 2.5sec from start to frist hurdle and then maintain under 1.00sec following phases. Lee should be able to maintain under 1.10sec from 10th hurdle to finish line. 4. Lee needs to control a consistent takeoff and landing distance pattern, Lee needs to lower the height of the center of gravity of the body with 0.33m when she clears the hurdles.

Age-Related Change of Upper Body Contribution to Walking Speed (보행스피드에 대한 상체 공헌도의 연령에 따른 변화)

  • Bae, Yeoung-Sang
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.4
    • /
    • pp.27-36
    • /
    • 2007
  • The purpose of this study was to investigate the effect of the upper body in order to increase a propulsive force in the old's walking. The subjects were each 10 males, the latter term of the aged and former term of the aged. There were three walking speeds of slow(about 5km/h), medium(about 6km/h), and maximum speed(about 7km/h). The subjects walking 11m were filmed the 5m section (from 3m to 8m) by 2-video cameras using three dimensional cinematography. And we computed different mechanical quantities and especially computed the relative momentum in order to achieve this study's aim. In this study, we was able to acquire some knowledge. The step length and step frequency increased in proportion to the walking speed, and the faster walking speed, the shorter ratio of supporting time( both legs supporting time/one step length time). When it was one leg support phase, the torso was indicated to generate the momentum in order to produce the propulsive force of walking. The upper and lower body had a cooperative relation for walking such as keeping step rate with the arms to legs and maintaining the body balance. The opposition phase for upward-and-downward direction of the torso and arms in walking was functioned to prevent the increase rapidly toward vertical direction of the center of gravity. The arms had contributed to coordinate the tempo of legs and the posture maintenance of the upper body. And by absorbing the relative momentum from the upper torso with arms to the lower torso, it had the rhythmical movement on upward-and-downward direction reducing the vertical reaction force. On account of the relations of absorption and generation of the propulsive force and the production of vertical impulse in the lower torso when walking by maximum speed, it was showed that the function of lower torso was come up as important problem for the mechanical posture stability and propulsive force coordination.

Simulation of Rollover Crashes and Passenger Injury Assessment for a Wheeled Armored Vehicle (차륜형 전투차량 전복 시 승무원 안전성 확보를 위한 시뮬레이션 연구)

  • Lee, Gyung-Soo;Jung, Ui-Jin;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.385-391
    • /
    • 2014
  • A wheeled armored vehicle is a military vehicle that has been developed to enhance combat capabilities and mobility for the army. The wheeled armored vehicle has a high center of gravity, and it operates on unpaved and sloped roads. Therefore, this vehicle has a high risk of rollover crashes. To design the interior of the military vehicle, the crew's safety during rollover crashes is an important factor. However, actual vehicle tests for design are extremely expensive. In this paper, nonlinear dynamic analysis is performed to simulate the rollover crashes and the passenger injury is assessed for a wheeled armored vehicle. The scope of this research is the rollover condition, FE modeling of the wheeled armored vehicle and the dummy, arrangement of dummies, assessment of passenger injuries, and simulation model for rollover crashes.

Kinematic Analysis of Hurdling of Elite 110-m Hurdlers (엘리트 110m 허들선수의 세 번째 허들 넘기 동작에 대한 자세 분석)

  • Lee, Jin-Taek
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.761-770
    • /
    • 2009
  • The purpose of this study was to observe the kinematic patterns of hurdling by domestic hurdlers and elite hurdlers from other countries in particular, we studied the hurdling motion and joint angles at the third hurdle in 110-m hurdle races. There were slight differences in the following variables at takeoff and landing: angle of the center of gravity(elite hurdler, $34.14^{\circ}$ domestic hurdler, $24.89^{\circ}$), angle variables the body angle(elite hurdler, $4.27^{\circ}$ domestic hurdler, $6.37^{\circ}$), the angle of trunk inclination(elite hurdler, $3.18^{\circ}$ domestic hurdler, $11.58^{\circ}$), and the hip angle(elite hurdler, $40.1^{\circ}$ domestic hurdler, $43.2^{\circ}$).

Kinetic Analysis of the Movement of Soft Tennis Forehand Middle Volley (남자 국가대표 정구선수 포핸드 미들 발리 동작의 운동역학적 분석)

  • Lee, Sung-Hee;Heo, Jeong;Kim, Hun-Soo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.749-759
    • /
    • 2009
  • The purpose of this study was to provide basic information for improving a soft tennis forehand middle volley technique based on kinematic and kinetic analyses of volleys performed by four male national tennis players($33.3{\pm}2.16$ years). The results are as follows. The first phase of the stroke was the longest, covering 64.7% of the stroke time. The displacement of the center of gravity was 48.1% to the right and 54% to the front in the first phase. When impacted, the elbow joint showed the highest average velocity, 3.67m/s, and the upper arm segment displayed the highest angular velocity, $201^{\circ}/s$. The average of the elbow angle and the ball velocity were $149^{\circ}$ and 18.9m/s, respectively. In the ground reaction force, the left and right foot forces in both the x and y directions showed a statistically significant difference. This result seems to indicate that when the left foot is pushed to the right, the force of the right foot is proportional and symmetrical to the left, serving as a supporter.

Enhancement of signal-to-noise ratio for uroflowmetric test regardless of urination situation (요속검사시 배뇨상황에 무관한 신호대잡음비 개선 기법)

  • Kim, Kyung-Ah;Choi, Seong-Su;Lee, Sang-Bong;Kim, Kyoung-Oak;Park, Kyung-Soon;Shin, Eun-Young;Kim, Wun-Jae;Cha, Eun-Jong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.423-431
    • /
    • 2009
  • Standard uroflowmetry measures the urine weight using single load cell to evaluate the urinary flow rate. Impact noise should be introduced due to gravity when the urine stream falls down into the container upon the load cell. The present study placed three load cells on the three vertices of a regular triangle and the three signals were ensemble averaged to enhance the signal-to-noise ratio(SNR) regardless of how the urination was made. Simulated urination experiment was performed with three different urine collection methods. In all three methods, SNR of the averaged signal was much higher than each load cell signals. With no urine collection device, the present signal averaging technique resulted in SNR values higher by 10~15 dB than when dual funnels or upper funnel were used to guide the urine stream. Therefore, it was demonstrated that the three point measurement followed by with ensemble averaging could enable accurate uroflowmetric test without any specially made urine collection devices.