• Title/Summary/Keyword: gravity center

Search Result 886, Processing Time 0.029 seconds

The Verification of Accuracy of 3D Body Scan Data - Focused on the Cyberware WB4 Whole Body Scanner - (3차원 인체 스캔 데이터의 정확도 검증에 관한 연구 - Cyberware의 WB4 스캐너를 중심으로 -)

  • Park, Sun-Mi;Nam, Yun-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.14 no.1
    • /
    • pp.81-96
    • /
    • 2012
  • The purpose of this study is to provide fundamental information for standardization of 3D body measurement. This research analyzes errors occurring in the process of extracting body size from 3D body scan data. First, as a result of analyzing basic state of the 3D body scanner's calibration, the point number of each section was almost the same, while the right and left as well as the front and back coordinates of the center of gravity are not, showing unstable data. Nevertheless, the latter does not influence on the size of cylinder such as width and circumference. Next, we analyzed point coordinates variations of scan data on a mannequin nude by life casting. The result was great deflection in case of complicated or horizontal sections including the reference point beyond proper distance from centers of four cameras. In case of the mannequin's size, accuracy proves comparatively high in that measurement errors in height, width, depth, and length dimension occurred all within allowable errors, only except chest depth, while there were a lot of measurement errors in a circumference dimension. Secondly, analysis of accuracy of automatic extraction identification program algorithm presented that a semi-automatic measurement program is better than an automatic measurement program. While both of them ate very acute in parts related to crotch, they are not in armpit related parts. Therefore, in extracting of human body size from 3D scan data, what really matters seems to parts related to armpits.

  • PDF

Turning Gait Planning of a Quadruped Walking Robot with an Articulated Spine

  • Park, Se-Hoon;Lee, Yun-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1926-1930
    • /
    • 2004
  • We suggest a turning gait planning of a quadruped walking robot with an articulated spine. Robot developer has tried to implement a gait more similar to that of natural animals with high stability margin. Therefore, so many types of walking robot with reasonable gait have been developed. But there is a big difference with a natural animal walking motion. A key point is the fact that natural animals use their waist-oint(articulated spine) to walk. For example, a crocodile which has short legs relative to a long body uses their waist to walk more quickly and to turn more effectively. The other animals such as tiger, dog and so forth, also use their waist. Therefore, this paper proposes discontinuous turning gait planning for a newly modeled quadruped walking robot with an articulated spine which connects the front and rear parts of the body. Turning gait is very important as same as straight gait. All animals need a turning gait to avoid obstacle or to change walking direction. Turning gait has mainly two types of gaits; circular gait and spinning gait. We apply articulated spine to above two gaits, which shows the majority of an articulated spine more effectively. Firstly, we describe a kinematic relation of a waist-joint, the hip, and the center of gravity of body, and then apply a spinning gait. Next, we apply a waist-joint to a circular gait. We compare a gait stability margin with that of a conventional single rigid body walking robot. Finally, we show the validity of a proposed gait with simulation.

  • PDF

Development of a 2-DOF Ankle Mechanism for Gait Rehabilitation Robots (보행 재활 로봇을 위한 2자유도 족관절 기구 개발)

  • Heo, Geun Sub;Kang, Oh Hyun;Lee, Sang Ryong;Lee, Choon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.503-509
    • /
    • 2015
  • In this paper, we designed and tested an ankle joint mechanism for a gait rehabilitation robot. Gait rehabilitation programs are designed to improve the natural leg motion of patients who have lost their walking capabilities by accident or disease. Strengthening the muscles of the lower-limbs and stimulation of the nervous system corresponding to walking helps patients to walk again using gait assistive devices. It is an obvious requirement that the rehabilitation system's motion should be similar to and as natural as the normal gait. However, the system being used for gait rehabilitation does not pay much attention to ankle joints, which play an important role in correct walking as the motion of the ankle should reflect the movement of the center of gravity (COG) of the body. Consequently, we have designed an ankle mechanism that ensures the safety of the patient as well as efficient gait training. Also, even patients with low leg muscle strength are able to operate the ankle joint due to the direct-drive mechanism without a reducer. This safety feature prevents any possible adverse load on the human ankle. The additional degree of freedom for the roll motion achieves a gait pattern which is similar to the normal gait and with a greater degree of comfort.

Performance Analysis of Range and Velocity Measurement Algorithm for Multi-Function Radar using Discriminator Estimation Method (변별기 추정방식을 적용한 다기능 레이다용 거리 및 속도 측정 알고리즘 성능 분석)

  • Choi Beyung Gwan;Lee Bum Suk;Kim Whan Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.1
    • /
    • pp.109-117
    • /
    • 2005
  • Range and velocity measurement algorithm is a procedure for estimating the accurate target position by using matched filter outputs equally spaced both in range and doppler frequency domain. Especially, in measurement algorithm for multi-function radar, it is necessary to consider processing time as well as accuracy in order to track multi-targets simultaneously. In this paper, we analyze range and velocity measurement algorithm using discriminator estimation method which is a technique applied to angle measurement of monopulse radar. The applied method required constant processing time for estimation can be used in multiple target tacking. But, it is necessary to consider measurement accuracy because of using minimum channel outputs for estimation. In the simulation, we show that the applied method is superior to the traditional gravity center measurement algorithm with respect to the accuracy performance and also analyze the characteristics of the proposed technique by calculating RMS error level as the processing parameters such as pulse width , channel step, etc. change.

Vision based Fast Hand Motion Recognition Method for an Untouchable User Interface of Smart Devices (스마트 기기의 비 접촉 사용자 인터페이스를 위한 비전 기반 고속 손동작 인식 기법)

  • Park, Jae Byung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.300-306
    • /
    • 2012
  • In this paper, we propose a vision based hand motion recognition method for an untouchable user interface of smart devices. First, an original color image is converted into a gray scaled image and its spacial resolution is reduced, taking the small memory and low computational power of smart devices into consideration. For robust recognition of hand motions through separation of horizontal and vertical motions, the horizontal principal area (HPA) and the vertical principal area (VPA) are defined respectively. From the difference images of the consecutively obtained images, the center of gravity (CoG) of the significantly changed pixels caused by hand motions is obtained, and the direction of hand motion is detected by defining the least mean squared line for the CoG in time. For verifying the feasibility of the proposed method, the experiments are carried out with a vision system.

A study on the havesting process and operating behaviour of working ships for farming laver (김 양식장 채취선의 운항거동과 수확조업에 관한 연구)

  • KIM, Ok-sam;MIN, Eun-bi;HWANG, Doo-jin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.56 no.3
    • /
    • pp.223-229
    • /
    • 2020
  • We analyzed the cutting mechanism of laver harvesting machine in the sea area near Gooam Port in Goheung, Jeollanam-do, and investigated the change and efficiency of laver collecting operation in the working ship. The laver working ship slides uniformly from the bow to the upper part of the laver collecting machine on the deck and cuts the wet laver attached to the bottom of the net at the blade of the havesting machine. The laver farming net, which was loaded with laver turrets on the deck by gravity and collected primitives, consisted of a ship structure that led to the stern side and into the sea. The working ship operation is in harvesting process while driving in a S-shape that is separated by one space to efficiently collect the laver net. During laver working ship operation, the speed was 0.51 m/s in the access stage, 0.56 m/s in the havesting stage, and 0.52 m/s in the exit stage. Considering the cutting edge life and production efficiency of the laver harvesting machine, it is appropriate to harvest 1.15 to 1.26 kg/rpm by operating at a rotational speed of about 700 to 800 rpm rather than forcibly harvesting the product at high speed. On the deck of the working ship, 959.7 kg of starboard and 1048.7 kg of center were 964.7 kg of port side. Based on the starboard, 9.3% of the central part and 0.5% of the port side appeared. The reason for this was due to the difference in harvest time according to the turning direction of the working ship.

Market trends and business opportunities of the smart insole technology (스마트인솔기술의 시장동향 및 사업화 기회)

  • Park, Jae-Sue;Park, Jung-Yong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1389-1397
    • /
    • 2016
  • This study was to evaluate opportunities for the commercialization of smart insole. smart technology is evolving to Insole. Pressure-sensitive sensor or an acceleration sensor is applied to create a balance of the feet and body, is also evolving for entertainment (sports, entertainment, etc.) and health care. Moreover, smart insole can fix an incorrect walking habit by sending a weight value measured by the sensor on a smartphone and during the movement, smart insole helps to correct body balance by measuring the center of gravity moving condition. However, smart tendency of the insole has yet to create a clear boundary in the entertainment and healthcare markets. This is because the fitness band, smart socks, smart shoes can also replace the benefits of a smart insole. Interestingly, the business opportunities are appearing more frequently in health care solution service of electrocardiogram, body temperature, blood pressure, etc., rather than smart devices.

A Study on the Ergonomic features and Their Improvements in Pen Design (필기구 디자인의 인간공학적 제요소와 개선에 관한 연구)

  • 이재환
    • Archives of design research
    • /
    • v.13 no.3
    • /
    • pp.253-260
    • /
    • 2000
  • Writing instruments or pens have many features not commonly found in other products in terms of their structure and characteristics of use. That is, different pens are usually composed of almost identical parts and/or structure. The fact they work always grabbed in hands considered, the ergonomic design of pens is essential. Reports indicate consumers evaluate pens in writing comfort above all other factors when they select pens. Among various factors related to writing comfort, it shouldspecifically be the ergonomic improvements that design can effectively contribute to. Studies on the pen-grabbing comfort or on approaches based on the understanding of human-work relationships generally lack when compared with fashion-conscious aesthetic approaches to pen design. This paper, therefore, aims to reestablish the ergonomic design criteria including the necessities of specifications required to provide indispensable data for the pen design processes. Consequently, it should produce basic set of information for systematic approach to pen design and development, which is commonly called'concurrent engineering'. Also a cost-effective solution for product diversification strategy could be attributed to a modular system database based on the result of this attempt.

  • PDF

Stability Margin of Fault-Tolerant Gaits to Joint Jam for Quadruped Robots (사족 보행 로봇의 관절고착고장을 위한 내고장성 걸음새의 안정여유도에 관한 연구)

  • Yang Jung-Min
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.5 s.311
    • /
    • pp.19-27
    • /
    • 2006
  • Improvement in gait stability of fault-tolerant gaits for quadruped robots is addressed in this paper. The previously developed fault-tolerant gait gives a quadruped robot the ability to continue its walk against the occurrence of a leg failure. But it has a drawback of having marginal gait stability, which may lead to tumbling when the robot body's center of gravity is perturbed. To overcome such a drawback, a novel fault-tolerant gait is presented in this paper that generates positive stability margin against a locked joint failure, in which a joint of a leg is locked in a known place. Positive stability margin is obtained by adjusting foot positions of supporting legs between leg swing sequences. The advantages of the proposed fault-tolerant gait are discussed by comparing with the previous gait in terms of gait stability, stride length and gait velocity.

The Effect of the Speed of a Ship on Her Turning Circle (선속이 선회권에 미치는 영향에 관한 연구)

  • 김기윤
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.35 no.3
    • /
    • pp.209-214
    • /
    • 1999
  • The turning circle of a ship is the path followed by her center of gravity in making a turn of 360$^{\circ}$degrees or more with helm at constant angle. But generally it means her path traced at full angle of the rudder. For the ordinary ship the bow will be inside and the stern outside this circle.It has been usually understood that the turning circle is not essentinally affected by ship's speed at Froude numbers less than about 0.30. However, it is recently reported that the speed provide considerable effects upon the turning circle in piloting many ships actually at sea. In this paper, the author analyzed what effects the speed could provide on the turning circle theoretically from the viewpoint of ship motions and examined how the alteration of the speed at Froude no. under 0.30 affect the turning circle actually, through experiments of actual ships of a small and large size.The main results were as follows.1. Even though ship's speed at Froude no. under 0.30, the alteration of the speed affects the turning circle considerably.2. When the full ahead speeds at Froude no. under 0.30 of small and large ships were increased about 3 times slow ahead speeds, the mean rates of increase of the advances, tactical diameters and final diameters of thease ships were about 16%, 21% and 19% respectively.3. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3 times slow ahead speed, the mean rate of increase of the turning circle elements of large ships was greater 10% than that of small ships. 4. When the full ahead speeds at Froued no. under 0.30 of small and large ships were increased about 3times slow ahead speeds, the mean rates of increase of the tactical diameter and final diameter of thease ships were greater than that of the advances of thease ships. 5. When only alteration of speed or sip's head turning is the effective action to avoid navigational fixed hagards, reducing the speed is always more advantageous than increasing the speed in order to shorten fore or transverse distance.

  • PDF