• 제목/요약/키워드: gravity center

Search Result 886, Processing Time 0.029 seconds

Plant Cells on Earth and in Space

  • Braun, Markus;Sievers, Andreas
    • Animal cells and systems
    • /
    • v.4 no.3
    • /
    • pp.201-214
    • /
    • 2000
  • Two quite different types of plant cells are analysed with regard to transduction of the gravity stimulus: (i) Unicellular rhizoids and protonemata of characean green algae; these are tube-like, tip-growing cells which respond to the direction of gravity. (ii) Columella cells located in the center of the root cap of higher plants; these cells (statocytes) perceive gravity. The two cell types contain heavy particles or organelles (sataoliths) which sediment in the field of gravity, thereby inducing the graviresponse. Both cell types were studied under microgravity conditions ($10^{-4}$/ g) in sounding rockets or spacelabs. From video microscopy of living Chara cells and different experiments with both cell types it was concluded that the position of statoliths depends on the balance of two forces, i.e. the gravitational force and the counteracting force mediated by actin microfilaments. The actomyosin system may be the missing link between the gravity-dependent movement of statoliths and the gravity receptor(s); it may also function as an amplifier.

  • PDF

A Study on the Trim and Resistance of Small Catamaran Using Numerical Analysis and a Model Test (수치해석 및 시험을 통한 소형 쌍동선의 종경사 및 저항 연구)

  • Kim, Jung-eun;Oh, Woo-jun;Hong, Chun-beom;Kim, Do-jung
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.5
    • /
    • pp.591-596
    • /
    • 2018
  • In Designing a Small Ship, the Design of the Trim for Sailing has a great influence on the Stability of the Ship as well as Resistance. The Center of Gravity of a Ship is mostly determined during Initial Design. This Study confirms the Effect of Trim on changes in Vertical Center of Gravity by Numerical Analysis for a Small Catamaran. The Results were examined in a Model test. However, No Model tests were conducted while varying the changes in Vertical Center of Gravity. Nonetheless, Investigation was completed for the Purpose of presenting Vertical Center of Gravity results according to plans for the Trim during Initial Design of a Small Ship. In order to verify the Results of Numerical Analysis, a Comparison with Experimental results was carried out. Alternation of Trim angle and Resistance performance according to changes in the Center of Gravity were studied.

Attitude Control of A Two-wheeled Mobile Manipulator by Using the Location of the Center of Gravity and Sliding Mode Controller (무게중심위치와 슬라이딩 모드 제어를 통한 이륜형 모바일 머니퓰레이터의 자세제어)

  • Kim, Min-Gyu;Woo, Chang-Jun;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.758-765
    • /
    • 2015
  • This paper proposes an attitude control system to keep the balance for a two-wheeled mobile manipulator which consists of a mobile platform and a three D.O.F. manipulator. In the conventional control scheme, complicated dynamics of the manipulator need to be derived for balancing control of a mobile manipulator. The method proposed in this paper, however, three links are considered as one body of mass and the dynamics are derived easily by using an inverted pendulum model. One of the best advantage of a sliding mode controller is low sensitivity to plant parameter variations and disturbances, which eliminates the necessity of exact modeling to control the system. Therefore the sliding mode control algorithm has been adopted in this research for the attitude control of mobile platform along the pitch axis. The center of gravity for the whole mobile manipulator is changing depending on the motion of the manipulator. And the orientation variation of center of gravity is used as reference input for the sliding mode controller of the pitch axis to maintain the center of gravity in the middle of robot to keep the balance for the robot. To confirm the performance of controller, MATLAB Simulink has been used and the resulting algorithms are applied to a real robot to demonstrate the superiority of the proposed attitude control.

A Development of Unbalanced Box Stacking System with High Stability using the Center of Gravity Measurement (무게중심 측정을 이용한 불평형 상자의 고안정 적재 시스템 개발)

  • Seong-Woo Bae;Dae-Gyu Han;Jae-Ho Ryu;Hyeon-hui Lee;Chae-Hun An
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.229-237
    • /
    • 2024
  • The logistics industry is converging with digital technology and growing into various logistics automation systems. However, inspection and loading/unloading, which are mainly performed in logistics work, depend on human resources, and the workforce is shrinking due to the decline in the productive population due to the low birth rate and aging. Although much research is being conducted on the development of automated logistics systems to solve these problems, there is a lack of research and development on load stacking stability, which has the potential to cause significant accidents. In this study, loading boxes with various sizes and positions of the center of gravity were set up, and a method for stacking that with high stability is presented. The size of the loading box is measured using a depth camera. The loading box's weight and center of gravity are measured and estimated by a developed device with four loadcells. The measurement error is measured through various repeated experiments and is corrected using the least squares method. The robot arm performs load stacking by determining the target position so that the centers of gravity of the loading boxes with unbalanced masses with a random sequence are transported in alignment. All processes were automated, and the results were verified by experimentally confirming load stacking stability.

A Study on the Microstructures and Mechanical Properties of Squeeze Cast High Strength Yellow Brass, Al Bronze and Sn Bronze Alloys (고강도 황동, 알루미늄 청동 및 인청동합금의 용탕단조 조직과 기계적 성질에 관한 연구)

  • Han, Yo-Sub;Lee, Ho-In
    • Journal of Korea Foundry Society
    • /
    • v.19 no.6
    • /
    • pp.484-492
    • /
    • 1999
  • The microstructures and mechanical properties of high strength yellow brass, Al bronze and Sn bronze alloys fabricated by gravity die casting and squeeze casting were investigated. A rapid cooling of casting was enhanced by pressure applied during solidification of Cu alloys, the cooling rate of casting was more great for high strength yellow brass alloy than other Cu alloys. Grain size and phases of the squeeze cast products become refined to 1/2 level compared to gravity die castings. Squeeze cast Al bronze and high strength yellow brass has about 10-20% higher yield and tensile strength and slighter decreased or nearly same elongation, compared to gravity die cast ones. Sn bronze has nearly same strength and hardness, but shows increased in elongation, compared to gravity die cast ones.

  • PDF

Hand Motion Recognition Algorithm Using Skin Color and Center of Gravity Profile (피부색과 무게중심 프로필을 이용한 손동작 인식 알고리즘)

  • Park, Youngmin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.2
    • /
    • pp.411-417
    • /
    • 2021
  • The field that studies human-computer interaction is called HCI (Human-computer interaction). This field is an academic field that studies how humans and computers communicate with each other and recognize information. This study is a study on hand gesture recognition for human interaction. This study examines the problems of existing recognition methods and proposes an algorithm to improve the recognition rate. The hand region is extracted based on skin color information for the image containing the shape of the human hand, and the center of gravity profile is calculated using principal component analysis. I proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. We proposed a method to increase the recognition rate of hand gestures by comparing the obtained information with predefined shapes. The existing center of gravity profile has shown the result of incorrect hand gesture recognition for the deformation of the hand due to rotation, but in this study, the center of gravity profile is used and the point where the distance between the points of all contours and the center of gravity is the longest is the starting point. Thus, a robust algorithm was proposed by re-improving the center of gravity profile. No gloves or special markers attached to the sensor are used for hand gesture recognition, and a separate blue screen is not installed. For this result, find the feature vector at the nearest distance to solve the misrecognition, and obtain an appropriate threshold to distinguish between success and failure.

Analysis of a Structure of the Kunsan Basin in Yellow Sea Using Gravity and Magnetic Data (중자력 자료를 이용한 황해 군산분지의 지질 구조 해석)

  • Park, Gye-Soon;Choi, Jong-Keun;Koo, June-Mo;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.30 no.1
    • /
    • pp.49-57
    • /
    • 2009
  • We studied a structure of the Kunsan basin in the Yellow Sea using ship-borne magnetic data and altimetry satellite-derived gravity data provided from the Scripps institution of oceanography in 2006. The gravity data was analyzed via power spectrum analysis and gravity inversion, and the magnetic data via analytic signal technique, pseudo-gravity transformation, and its inversion. The results showed that the depth of bedrock tended to increase as we approached the center of the South Central Sag in Kunsan basin and that the maximum and minimum of its depth were estimated to be about 6-8 km and 2 km, respectively. Inaddition, the observed high anomaly of gravity and magnetism was attributed to the intrusion of igneous rock of higher density than the surrounding basement rock in the center of South Central Sag, which was consistent with the interpretation of seismic data obtained in the same region.

Static Balancing of Laminated Rotor Blade by Lab-view (Lab-view를 이용한 적층 블레이드의 정적 밸런싱)

  • Kim, K.S.;Kong, J.H.;Chun, S.Y.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.391-394
    • /
    • 2009
  • Asymmetrical and unbalanced features such as rotor blade of helicopter, actuator of hard-disk in personal computer are usually manufactured with composite materials. In this case, mass distributions and center of gravity of the parts are important because of their static balancing. Therefore in the manufacturing processes, it is needed to check out the exact data of weight and gravity center. In this study, it has been studied experimentally the balancing of laminated rotor blade by using multiple-point weighing method and lab-view system.

  • PDF

Spectral Characteristics of Frication Noise in Korean Sibilants

  • Hwang Hyun Kyung
    • MALSORI
    • /
    • no.49
    • /
    • pp.31-50
    • /
    • 2004
  • This study investigates spectral characteristics of frication noise in Korean sibilants in terms of center of gravity and skewness. Specifically, the present study seeks to observe the two parameters with emphasis on place of articulation in different vowel environments. This study also examines whether these parameters can discriminate phonation types. The results showed that the fricatives are palatalized in front of the front vowel /i/ and the affricates are articulated at the same place of articulation regardless of the following vowels. This study also suggests that the place of articulation of the fricatives followed by /i/ is the same as those of the Korean affricates. With regard to the phonation type, there was a significant difference in the center of gravity between lax and tense series for both fricatives and affricates.

  • PDF

Free-wing Tilt-body Aircraft Controllerability Analysis for Change of Center of Gravity (무게중심 변화에 따른 자유날개 동체꺾임형 항공기의 조종성 해석)

  • Park, Wook-Je
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.19 no.4
    • /
    • pp.1-5
    • /
    • 2011
  • The free-wing tilt-body aircraft is researched in the flight performance characteristics for center of gravity (CG) change. All of speed, body tilt angle and center of gravity change are simulated to determine the flight envelope by a non-linear 3-DOF mathematical model. In flight, this aircraft configuration changes by the tiltable empennage. Then, flight dynamics distinguishes from those of a conventional fixed-wing aircraft. Though flight performance and trimmability are studied by CG change, the flight model of free-wing tilt-body aircraft is to reduce the hidden risk and to achieve the successful flight test. It is analyzed the flight characteristics by CG change that distinguishes free-wing tilt-body aircraft from the conventional aircraft.