• Title/Summary/Keyword: gravitational lensing: micro

Search Result 12, Processing Time 0.023 seconds

GRAVITATIONAL MICRO-LENSING EFFECTS AND ASTROPHYSICAL APPLICATIONS

  • Chang, Kyong-Ae
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.97-105
    • /
    • 1992
  • The most favourable possibilities to observe the phenomena of gravitational lensing are the high amplification events and the time delay between the images. These effects provide us the information to determine the Hubble parameter and the matter distribution in the universe. The image properties due to micro-lensing also is of an importance to find out the size and the structure of the source.

  • PDF

OPTICAL PROPERTIES AND TOPOLOGICAL CONFIGURATION OF CAUSTICS OF MICRO GRAVITATIONAL LENSES

  • Chang, Kyong-Ae
    • Journal of The Korean Astronomical Society
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 1991
  • The mathematical properties of gravitational lens equations are examined in the frame work of gravitational micro-lensing effects. The caustics of the gravitational lens may be defined in terms of "cusp" and "folding" in general. In some cases for overfocussing, however, the critical curves (caustics) have no cusp and no folding. If the observer is in the overfocussed region, he may not see any lensed image.

  • PDF

THE IMAGE CONFIGURATION OF MICRO LENSING WITH AN EXTENDED SOURCE

  • Chang, Kyong-Ae
    • Journal of The Korean Astronomical Society
    • /
    • v.21 no.2
    • /
    • pp.97-104
    • /
    • 1988
  • This study presents the specific rule governing the image configurations of an extended source for micro lensing of the two body gravitational lens system developed by Chang and Refsdal (1979). Various topological situations of a source are considered in relation to the regions bounded by the so-called critical curves.

  • PDF

DEPENDENCE OF THE SENSITIVITY TO PLANETS ON THE PROPERTIES OF HIGH-MAGNIFICATION GRAVITATIONAL MICROLENSING EVENTS

  • Han, Cheong-Ho
    • Journal of The Korean Astronomical Society
    • /
    • v.44 no.4
    • /
    • pp.109-113
    • /
    • 2011
  • In current microlensing planet searches that are being carried out in a survey/follow-up mode, the most important targets for follow-up observations are lensing events with high magnifications resulting from the very close approach of background source stars to the lens. In this paper, we investigate the dependence of the sensitivity to planets on detailed properties of high-magnification events. From this, it is found that the sensitivity does not monotonically increase as the impact parameter between the lens and the source trajectory decreases. Instead, it is roughly the same for events with impact parameters less than a certain threshold value. It is also found that events involving main-sequence source stars are sensitive to planets in a much wider range of separation and mass ratio, than those events involved with giant source stars. Based on these results, we propose observational strategies for maximal planet detections considering the types of telescopes available for follow-up observations.

DETECTION LEVEL ENHANCEMENTS OF GRAVITATIONAL MICROLENSING EVENTS FROM LIGHT CURVES: THE SIMULATIONS

  • IBRAHIM, ICHSAN;MALASAN, HAKIM L.;DJAMAL, MITRA;KUNJAYA, CHATIEF;JELANI, ANTON TIMUR;PUTRI, GERHANA PUANNANDRA
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.235-236
    • /
    • 2015
  • Microlensing can be seen as a version of strong gravitation lensing where the separation angle of the image formed by light deflection by a massive object is too small to be seen by a ground based optical telescope. As a result, what can be observed is the change in light intensity as function of time; the light curve. Conventionally, the intensity of the source is expressed in magnitudes, which uses a logarithmic function of the apparent flux, known as the Pogson formulae. In this work, we compare the magnitudes from the Pogson formulae with magnitudes from the Asinh formulae (Lupton et al. 1999). We found for small fluxes, Asinh magnitudes give smaller deviations, about 0.01 magnitudes smalller than Pogson magnitudes. This result is expected to give significant improvement in detection level of microlensing light curves.

Data Management Plan for the KMTNet Project

  • Lee, Chung-Uk;Kim, Dong-Jin;Kim, Seung-Lee;Park, Byeong-Gon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.221.1-221.1
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute (KASI) is developing three 1.6m optical telescopes with $18k{\times}18k$ mosaic CCD cameras. These telescopes will be installed and operated at Chile, South Africa, and Australia for Korea Micro-lensing Telescope Network (KMTNet) project. The main scientific goal of the project is to discover earth-like extra-solar planets using the gravitational micro-lensing technique. To achieve the goal, each telescope at three sites will continuously monitor the specific region of Galactic bulge with 2.5 minute cadence for five years. Assuming 12 hour observation in maximum for a night, the amount of 200 GB file storage is required for one night observation at one observatory. If we consider the whole project period and the data processing procedure, a few PB class data storage, high-speed network, and high performance computers are essential. In this presentation, we introduce the KMTNet data management plan that handles gigantic data; raw image collecting, image processing, photometry pipeline, database archiving, and backup.

  • PDF

KMT-2016-BLG-0212: FIRST KMTNET-ONLY DISCOVERY OF A SUBSTELLAR COMPANION

  • Hwang, K.H.;Kim, H.W.;Kim, D.J.;Gould, A.;Albrow, M.D.;Chung, S.J.;Han, C.;Jung, Y.K.;Ryu, Y.H.;Shin, I.G.;Shvartzvald, Y.;Yee, J.C.;Zang, W.;Zhu, W.;Cha, S.M.;Kim, S.L.;Lee, C.U.;Lee, D.J.;Lee, Y.;Park, B.G.;Pogge, R.W.
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.197-206
    • /
    • 2018
  • We present the analysis of KMT-2016-BLG-0212, a low flux-variation ($I_{flux-var}{\sim}20mag$) microlensing event, which is in a high-cadence (${\Gamma}=4hr^{-1}$) field of the three-telescope Korea Microlensing Telescope Network (KMTNet) survey. The event shows a short anomaly that is incompletely covered due to the brief visibility intervals that characterize the early microlensing season when the anomaly occurred. We show that the data are consistent with two classes of solutions, characterized respectively by low-mass brown-dwarf (q = 0.037) and sub-Neptune (q < $10^{-4}$) companions. Future high-resolution imaging should easily distinguish between these solutions.

OGLE-2017-BLG-1049: ANOTHER GIANT PLANET MICROLENSING EVENT

  • Kim, Yun Hak;Chung, Sun-Ju;Udalski, A.;Bond, Ian A.;Jung, Youn Kil;Gould, Andrew;Albrow, Michael D.;Han, Cheongho;Hwang, Kyu-Ha;Ryu, Yoon-Hyun;Shin, In-Gu;Shvartzvald, Yossi;Yee, Jennifer C.;Zang, Weicheng;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyoun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.6
    • /
    • pp.161-168
    • /
    • 2020
  • We report the discovery of a giant exoplanet in the microlensing event OGLE-2017-BLG-1049, with a planet-host star mass ratio of q = 9.53 ± 0.39 × 10-3 and a caustic crossing feature in Korea Microlensing Telescope Network (KMTNet) observations. The caustic crossing feature yields an angular Einstein radius of θE = 0.52 ± 0.11 mas. However, the microlens parallax is not measured because the time scale of the event, tE ≃ 29 days, is too short. Thus, we perform a Bayesian analysis to estimate physical quantities of the lens system. We find that the lens system has a star with mass Mh = 0.55+0.36-0.29 M⊙ hosting a giant planet with Mp = 5.53+3.62-2.87 MJup, at a distance of DL = 5.67+1.11-1.52 kpc. The projected star-planet separation is a⊥ = 3.92+1.10-1.32 au. This means that the planet is located beyond the snow line of the host. The relative lens-source proper motion is μrel ~ 7 mas yr-1, thus the lens and source will be separated from each other within 10 years. After this, it will be possible to measure the flux of the host star with 30 meter class telescopes and to determine its mass.

KMT-2018-BLG-0029LB: A VERY LOW MASS-RATIO Spitzer MICROLENS PLANET

  • Gould, Andrew;Ryu, Yoon-Hyun;Novati, Sebastiano Calchi;Zang, Weicheng;Albrow, Michael D.;Chung, Sun-Ju;Han, Cheongho;Hwang, Kyu-Ha;Jung, Youn Kil;Shin, In-Gu;Shvartzvald, Yossi;Yee, Jennifer C.;Cha, Sang-Mok;Kim, Dong-Jin;Kim, Hyoun-Woo;Kim, Seung-Lee;Lee, Chung-Uk;Lee, Dong-Joo;Lee, Yongseok;Park, Byeong-Gon;Pogge, Richard W.;Beichman, Charles;Bryden, Geoff;Carey, Sean;Gaudi, B. Scott;Henderson, Calen B.;Zhu, Wei;Fouque, Pascal;Penny, Matthew T.;Petric, Andreea;Burdullis, Todd;Mao, Shude
    • Journal of The Korean Astronomical Society
    • /
    • v.53 no.1
    • /
    • pp.9-26
    • /
    • 2020
  • At q = 1.81 ± 0.20 × 10-5, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio q of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent "pile-up" at q = 5-10 ×10-5. The event was observed by Spitzer, yielding a microlens-parallax πE measurement. Combined with a measurement of the Einstein radius θE from finite-source effects during the caustic crossings, these measurements imply masses of the host Mhost = 1.14+0.10-0.12 M and planet Mplanet = 7.59+0.75-0.69 M, system distance DL = 3.38+0.22-0.26 kpc and projected separation a = 4.27+0.21-0.23 AU. The blended light, which is substantially brighter than the microlensed source, is plausibly due to the lens and could be observed at high resolution immediately.