• Title/Summary/Keyword: graphite carbon

검색결과 659건 처리시간 0.028초

Si-SiC-Graphite 복합재료의 기계적 물성과 마찰 마모 특성 (Mechanical and Tribological Properties of Si-SiC-Graphite Composites)

  • 김인섭;이병하
    • 한국세라믹학회지
    • /
    • 제32권6호
    • /
    • pp.643-652
    • /
    • 1995
  • Si-SiC-graphite composites were developed by incorporating solid lubricant graphite into Si-SiC, in the light of improving tribological properties of Si-SiC ceramics. Si-SiC-graphite composites were fabricated by infilterating silicon melt into the mixture of α-SiC, carbon black and graphite powder at 1750℃ under 3 Torr. The particle size of graphite was in the range of 150 to 500㎛, and the loading content of graphite was 0, 20, 25, 30, 35 vol% in the mixture of α-SiC and carbon black. The mechanical and tribological properties of this composites were studied. The density, hardness, flexural strength, compressive strength and Young's modulus were decreased with increasing of graphite content. An additiion of solid-lubricant graphite up to 30 vol% has improved tribological properties of Si-SiC ceramics without considerable degradation of mechanical properties.

  • PDF

Bulk graphite: materials and manufacturing process

  • Lee, Sang-Min;Kang, Dong-Su;Roh, Jea-Seung
    • Carbon letters
    • /
    • 제16권3호
    • /
    • pp.135-146
    • /
    • 2015
  • Graphite can be classified into natural graphite from mines and artificial graphite. Due to its outstanding properties such as light weight, thermal resistance, electrical conductivity, thermal conductivity, chemical stability, and high-temperature strength, artificial graphite is used across various industries in powder form and bulk form. Artificial graphite of powder form is usually used as anode materials for secondary cells, while artificial graphite of bulk form is used in steelmaking electrode bars, nuclear reactor moderators, silicon ingots for semiconductors, and manufacturing equipment. This study defines artificial graphite as bulk graphite, and provides an overview of bulk graphite manufacturing, including isotropic and anisotropic materials, molding methods, and heat treatment.

Electrochemical Characteristics of Silicon-carbon Composite Anodes for Lithium Rechargeable Batteries

  • Lee, Jaeho;Won, Sora;Shim, Joongpyo;Park, Gyungse;Sun, Ho-Jung;Lee, Hong-Ki
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.193-197
    • /
    • 2014
  • Si-carbon composites as anode materials for lithium rechargeable batteries were prepared simply by mixing Si nanoparticles with carbon black and/or graphite through a solution process. Si nanoparticles were well dispersed and deposited on the surface of the carbon in a tetrahydrofuran solution. Si-carbon composites showed more than 700 mAh/g of initial capacity under less than 20% loading of Si nanoparticle in the composites. While the electrode with only Si nanoparticles showed fast capacity fading during continuous cycling, Si-carbon composite electrodes showed higher capacities. The cycle performances of Si nanoparticles in composites containing graphite were improved due to the role of the graphite as a matrix.

Physical Properties of Graphite Nanofiber Filled Nylon6 Composites

  • Park, Eun-Ha;Joo, Hyeok-Jong
    • Carbon letters
    • /
    • 제7권2호
    • /
    • pp.87-96
    • /
    • 2006
  • This paper describes the physical properties of filled Nylon6 composites resin with nano-sized carbon black particle and graphite nanofibers prepared by melt extrusion method. In improving adhesions between resin and fillers, the surface of the carbon filler materials were chemically modified by thermo-oxidative treatments and followed by treatments of silane coupling agent. Crystallization temperature and rate of crystallization increased with increases in filler concentration which would act as nuclei for crystallization. The silane treatments on the filler materials showed effect of reduction in crystallization temperature, possibly from enhancement in wetting property of the surface of the filler materials. Percolation transition phenomenon at which the volume resistivity was sharply decreased was observed above 9 wt% of carbon black and above 6 wt% of graphite nanofiber. The graphite nanofibers contributed to more effectively in an increase in electrical conductivity than carbon black did, on the other hand, the silane coupling agent negatively affected to the electrical conductivity due to the insulating property of the silane. Positive temperature coefficient (PTC) phenomenon, was observed as usual in other composites, that is, temperature increase results conductivity increase. The dispersity of the fillers were excellently approached by melt extrusion of co-rotational twin screw type and it could be illustrated by X-ray diffraction and SEM.

  • PDF

Electrochemical Characteristics of Carbon-coated Si/Cu/graphite Composite Anode

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Won-Il;Cho, Byung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1607-1610
    • /
    • 2009
  • The carbon-coated Si/Cu powder has been prepared by mechanical ball milling and hydrocarbon gas decomposition methods. The phase of Si/Cu powder was analyzed using X-ray diffraction (XRD), dispersive Raman spectroscopy, electron probe microanalysis (EPMA) and transmission electron microscope (TEM). The carbon-coated Si/Cu powders were used as anode active material for lithium-ion batteries. Their electrochemical properties were investigated by charge/discharge test using commercial LiCo$O_2$ cathode and lithium foil electrode, respectively. The surface phase of Si/Cu powders consisted of carbon phase like the carbon nanotubes (CNTs) with a spacing layer of 0.35 nm. The carbon-coated Si/Cu/graphite composite anode exhibited a higher capacity than commercial graphite anode. However, the cyclic efficiency and the capacity retention of the composite anode were lower compared with graphite anode as cycling proceeds. This effect may be attributed to some mass limitations in LiCo$O_2$ cathode materials during the cycling.

황산 용액중의 분극시 나타나는 탄소전극들의 계면반응 (Study on the surface reactions of carbon and graphite electrodes in sulfuric acid solution)

  • 오한준;김인기;이종호;이영훈
    • 한국결정성장학회지
    • /
    • 제6권4호
    • /
    • pp.648-662
    • /
    • 1996
  • 임피던스 스펙트럼을 이용하여 황산 용액에서 glassy carbon과 인조흑연(PVDF 합성 흑연)의 전극표면에 cyclic 분극을 부하 하였을 경우 전극표면에서 나타나는 표면반응에 대하여 조사하여 . 두 재료 표면에서 산소의 산화 혹은 환원과 관련되거나 또는 탄소재료 표면에 화학흡착된 표면작용기(surface functional group)의 변화와 관련되는 것으로 생각되는 산화환원 피크가 potentio-dynamic곡선에서 나타났다. 이러한 전극 표면에서의 표면작용기의 산화환원은 glassy carbon과 PVDF합성 흑연의 임피던스 스펙트럼에도 커다란 영향을 미치는 것으로 나타났다. 또 glassy carbon과 PVDF합성 흑연에서의 임피던스 파라미터는 분극부하에의해 현저한 변화가 나타났다.가 나타났다.

  • PDF

Comparative study on carboxylated styrene butadiene rubber composites reinforced by hybrid fillers of rice bran carbon and graphite carbon

  • Fan, Yuan;Li, Qingyuan;Li, Xiangxu;Lee, Dam hee;Cho, Ur Ryong
    • Carbon letters
    • /
    • 제27권
    • /
    • pp.72-80
    • /
    • 2018
  • In the present work, a comparative study of the mechanical behavior of two series of elastomeric composites, based on carboxylated styrene butadiene rubber (X-SBR) and reinforced with rice bran carbon (RBC) and graphite, is reported. Hybrid composites of X-SBR filled with RBC-graphite were also investigated in terms of the cure characteristics, hardness, tensile properties, abrasion resistance, and swelling. It was observed that the cure times decreased with the incorporation of a carbon filler whereas the torque difference, tensile strength, tensile modulus, hardness, and swelling resistance increased compared to the neat X-SBR revealing a favorable characteristic of crosslinking. Dynamic rheological analysis showed that the G' values of the composites, upon the addition of RBC-graphite, were changed to some extent. This demonstrates that the presence of a strongly developed network of fillers will ensure a reinforcing characteristic in a polymer matrix.

흑연분말의 첨가가 탄소/탄소 복합재료의 물성에 미치는 영향 (Effect of Graphite Powder Addition on the Mechanical Properties of Carbon/Carbon Composites)

  • 신준혁;황성덕;강태진
    • Composites Research
    • /
    • 제13권2호
    • /
    • pp.72-80
    • /
    • 2000
  • 흑연분말 첨가가 탄소/탄소 복합재료의 물성에 미치는 영향에 대하여 연구하였다. 페놀수지에 흑연분말을 0~30wt.%첨가하여 greenbody(G/B)를 제조하고 이를 $1000^{\circ}C$까지 탄화시켜 탄소/탄소 복합재료를 제조하였다. 굽힘특성은 G/B와 탄소/탄소 복합재료 모두 흑연분말 20wt.% 첨가시 최대치를 보였으며, 그 이상에서는 수지 내의inhomogeneity 증가 때문에 굽힘강도가 감소하였다. 페놀수지만을 경화시킨 경우에는 흑연분말을 20wt.% 첨가한 수지의 굽힘 강도가 첨가하지 않은 수지의 경우보다 낮은 값을 보였으나, 탄화 후에는 혹연분말의 첨가가 탄화수축 감소와 균열경로를 바꾸어 주는 효과를 주어서, 분말을 첨가한 시편의 굽힘 강도가 3배 이상 증가하였다. Mode II ENF 시험결과, G/B와 탄소/탄소 복합재료 모두 20wt.%의 흑연분말 첨가시에 에너지해방율($G_{II}$)이 증가하였으나, 분말의 첨가가 탄소/탄소 복합재료에 더 효과적임을 에너지해방율의 증가치로부터 확인할 수 있었다.

  • PDF

리튬이온배터리 Graphite/Silicon/Carbon 복합 음극소재의 전기화학적 성능 (Electrochemical Performance of Graphite/Silicon/Carbon Composites as Anode Materials for Lithium-ion Batteries)

  • 조윤지;이종대
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.320-326
    • /
    • 2018
  • 본 연구에서는리튬이온전지음극활물질로 Graphite의 전기화학적특성을향상시키기 위하여 Graphite/Silicon/Carbon (G/Si/C) 복합소재를 제조하였다. 제조된 G/Si/C 합성물은 XRD, TGA, SEM을 사용하여 물성을 분석하였다. 또한 $LiPF_6$ (EC:DMC:EMC=1:1:1 vol%) 전해액에서 리튬이차전지의 충 방전 사이클, 율속, 순환전압전류 및 임피던스 테스트를 통해 전기화학적 성능을 조사하였다. G/Si/C 전극을 사용한 리튬이온전지는 Graphite 전극을 사용한 전지보다 우수한 특성을 나타내었으며 Silicon 함량이 늘어날수록 용량은 높아지나 안정성이 저하됨을 확인하였다. 또한 $25{\mu}m$ 이하의 Silicon을 사용하였을 때 용량과 안정성 모두 향상되는 것을 나타내었다. Silicon (${\leq}25{\mu}m$) 10 wt%인 경우 G/Si/C 복합소재는 495 mAh/g의 초기 방전 용량, 89%의 용량 보존율과 2 C/0.1 C에서 80%의 속도 특성을 보였다.

팽창흑연을 혼입한 시멘트 경화체의 흡착 특성 (Fine Dust Adsorption Properties of Cement Matrix Mixed with Expanded Graphite)

  • 이진원;이창우;황우준;이상수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 가을 학술논문 발표대회
    • /
    • pp.105-106
    • /
    • 2022
  • Now, the world is increasingly anxious about fine dust due to abnormal temperatures caused by global warming and increased yellow dust caused by desertification, and the World Health Organization (WHO) pointed out that more than 99% of the world's population is exposed to fine dust. In this situation, the reduction rate of fine dust and carbon dioxide of the matrix was tested by using expanded graphite, an eco-friendly and porous material, to improve air quality. As a result of the test, since expanded graphite is a material that expands between layers compared to conventional graphite, the reduction rate of fine dust and carbon dioxide decreases as the replacement rate of expanded graphite increases.

  • PDF