• Title/Summary/Keyword: graphite/epoxy

Search Result 136, Processing Time 0.022 seconds

Experimental Study on Shape Control of Smart Composite Structure with SMA actuators (SMA 작동기를 이용한 스마트 복합재 구조의 형상 제어에 관한 실험적 연구)

  • Yang Seung-Man;Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • In this paper, active shape control of composite structure actuated by shape memory alloy (SMA) wires is presented. Hybrid composite structure was established by attaching SMA actuators on the surfaces of graphite/epoxy composite beam using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperatures. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For faster and more accurate shape or deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

  • PDF

A study on structural health monitoring of composite structures by using embedded fiber Bragg grating sensors (광섬유 브래그 격자 센서를 이용한 복합재료 구조물의 건전성 감시 기법 개발에 관한 연구)

  • Kim Won-Seok;Lee Jung-Ju
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.107-110
    • /
    • 2004
  • In this paper, a new structural health monitoring technique for composite laminates through the use of embedded fiber Bragg grating (FBG) sensors is presented. The method traces the ply stress states of a laminate and compares them with failure criteria during the service time of structures. The ply stress state of every ply composing the composite laminate can be obtained using classical lamination theory by embedded FBG sensors in the laminate. Graphite/epoxy laminate specimens, embedded with three FBG sensors, were fabricated. Tension tests were performed to evaluate the ply stress states tracing technique. Experimental results show that laminates experience fracture when the ply stress states are over the boundaries of failure criteria. In this method, critical damage can be detected by the ply stress states which are close to the boundaries of the failure criteria.

  • PDF

Aging Characteristics of Composite Materials in Carbody of Tilting Train using Accelerated Aging Test (가속노화시험을 이용한 틸팅차량 차체 복합재의 노화특성)

  • Yoon Sung-Ho;Kim Yong-Goo;Nam Jung-pyo;Shin Kwang-Bok;Koo Dong-Hoe
    • Proceedings of the KSR Conference
    • /
    • 2003.10c
    • /
    • pp.333-338
    • /
    • 2003
  • Polymeric composite structures used in ground transportation applications such as the carbody of tilting train may be exposed to a ground environmental conditions during long-term missions. In this study, the degradation of mechanical and physical properties of graphite/epoxy composite and glass fabric/phenol composite under ground environmental conditions was investigated. Accelerated environmental conditions of ultraviolet radiation, temperature, and moisture were considered. Several types of specimens were used to investigate the effects of environmental conditions on mechanical properties of the composites. Also, storage shear modulus, loss shear modulus, and tan 8 were measured as a function of exposure times through a dynamic mechanical analyzer. Finally, composite surfaces exposed to environmental conditions were examined using a scanning electron microscope.

  • PDF

Fabrication of polymer thick film resistor and study on resistance variation regarding curing temperature (폴리머 후막 저항체의 제작 및 경화 온도에 따른 저항 값 변화에 대한 연구)

  • Yoo, Myong-Jae;Lee, Sang-Myong;Park, Seong-Dae;Kang, Nam-Kee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.212-213
    • /
    • 2006
  • Polymer thick film resistor paste was fabricated using various materials. Inorganic materials of carbon black and graphite were selected as fillers and epoxy resin was selected as organic material. Solvent with high boiling temperature was applied to adjust viscosity. A designed test coupon pattern was used to evaluate fabricated resistors. Aspect ratio of 1 was selected for evaluating resistor values. Electrical properties of fabricated resistors were measured and their values analyzed in relation to paste composition. PTF fabricated using carbon black as fillers achieved resistor value of $530{\Omega}/sq$.

  • PDF

Analysis of impact response and damage in laminated composite cylindrical shells undergoing large deformations

  • Kumar, Surendra
    • Structural Engineering and Mechanics
    • /
    • v.35 no.3
    • /
    • pp.349-364
    • /
    • 2010
  • The impact behaviour and the impact-induced damage in laminated composite cylindrical shell subjected to transverse impact by a foreign object are studied using three-dimensional non-linear transient dynamic finite element formulation. A layered version of 20 noded hexahedral element incorporating geometrical non-linearity is developed based on total Langragian approach. Non-linear system of equations resulting from non-linear strain displacement relation and non-linear contact loading are solved using Newton-Raphson incremental-iterative method. Some example problems of graphite/epoxy cylindrical shell panels are considered with variation of impactor and laminate parameters and influence of geometrical non-linear effect on the impact response and the resulting damage is investigated.

Experimental and numerical study of effect of the fibers orientation of the different types of composite plates notched of U-shape repaired by composite patch

  • Berrahou Mohamed;Amari Khaoula;Belkaddour Leila;Serier Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.201-208
    • /
    • 2023
  • In this work, the effect of the correction fibers direction on the efficiency of repairing damaged composite plates was highlighted. The composite plates studied in this work consist of eight layers of graphite/epoxy, while the patch used in this repair consists of four layers of the same type. The results obtained in this work, whether with regard to the experimental or analytical side, showed that the fibers orientation affects the repair efficiency, so the closer the angle of fibers inclination is to the tensile strength direction, the performance of the composite material is ideal. Hence, we conclude that the composite materials with longitudinal fibers (Parallel to tensile strength) is the most powerful and efficient material in performance.

Manufacturing Functional Nano-Composites by Using Field-Aided Micro-Tailoring Manipulation (Field-Aided Micro-Tailoring에 의한 기능성 나노복합재 제조)

  • Cho, Hee-Keun;Rhee, Juhun;Sim, Eun-Sup
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.178-185
    • /
    • 2012
  • One of a unique technique in manipulating a multifunctional composite is demonstrated in this study. An electric field is applied to a liquid suspension in order to align the inclusions along with the direction electric field. This is called FAiMTa(Field Aided Micro Tailoring). It makes orthotropic polymer composites by arranging the micro and/or nano size particle inclusions in chain-line formation. Several kinds of particles such as $Al_2O_3$, graphite, CNT(Carbon Nano Tube), W(Tungsten) are tested to verify the effectiveness of the FAiMTa. The particles redistributed in an epoxy suspension and their coupons show that mechanical and thermal properties of orthotropic and random composites containing those particles depend on the trend of particles' alignment. The micro-images of the functional composite from FAiMTa have been captures and their physical properties demonstrate their wide-range and state-of-the-art application for advanced multifunctional composites.

Development of Carbon Composite Bipolar Plates for Vanadium Redox Flow Batteries

  • Lee, Nam Jin;Lee, Seung-Wook;Kim, Ki Jae;Kim, Jae-Hun;Park, Min-Sik;Jeong, Goojin;Kim, Young-Jun;Byun, Dongjin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.11
    • /
    • pp.3589-3592
    • /
    • 2012
  • Carbon composite bipolar plates with various carbon black contents were prepared by a compression molding method. The electrical conductivity and electrochemical stability of the bipolar plates have been evaluated. It is found that the electrical conductivity increases with increasing carbon black contents up to 15 wt %. When the carbon black contents are greater than 15 wt %, the electrical conductivity decreases because of a poor compatibility between epoxy resin and carbon black, and a weakening of compaction in the carbon composite bipolar plate. Based on the results, it could be concluded that there are optimum carbon black contents when preparing the carbon composite bipolar plate. Corrosion tests show that the carbon composite bipolar plate with 15 wt % carbon black exhibits better electrochemical stability than a graphite bipolar plate under a highly acidic condition. When the optimized carbon composite bipolar plate is applied to vanadium redox flow cells, the performance of flow cells with the carbon composite bipolar plate is comparable to that of flow cells with the graphite bipolar plate.

A Study on the Stress Wave Propagation of Composite Laminate Subjected to Low-Velocity Impact (저속 충격을 받는 적층 복합재의 응력파 전파에 관한 연구)

  • 안국찬;김문생;김규남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.1
    • /
    • pp.9-19
    • /
    • 1989
  • The impact stress and wave propagation of graphite/epoxy and glass/epoxy laminates subjected to the transverse low-velocity impact of steel balls are investigated theoretically. A plate finite element model based on Whitney and Pagano's theory for the analysis of heterogeneous and anisotropic plates taking into account of the transverse shear deformation is used for the theoretical investigation. This model is in conjuction with static contact laws. The basic element is a four-node quadrilateral with the five degrees-of-freedom per node. The reduced integration technique is used for shear locking associated with low-order function in application to thin plates. These two materials are composed of [0.deg./45.deg./0.deg./-45.deg./0.deg.]$_{2S}$ and [90.deg./45.deg./90.deg./-45.deg./90.deg.]$_{2S}$ stacking sequences and have clamped-clamped boundary conditions. Finally, the present results are compared with an existing solution and wave propagation theory and then impact stress and wave propagation phenomena are investigated.gated.

Electromagnetic Interactions between a Cellular Phone and the Human Body and Synthesis of a Bone-Equivalent Material (휴대폰 전자파와 인체의 상호 영향 및 뼈 유사 물질 합성 연구)

  • 윤용섭;김인광;전중창;박위상
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.2
    • /
    • pp.277-290
    • /
    • 1999
  • A simulation using the finite-difference time-domain method to analyze the electromagnetic interactions between a cellular phone and the human body was conducted, and a synthesis of a bone-equivalent material to make a human head phantom was performed. A test model of the cellular phone was fabricated to measure its reflection coefficient and radiation pattern in the free space. Various effects of the human body on the characteristics of the phone, such as input impedance, reflection coefficient, radiation pattern, and radiation efficiency are analyzed as the distance between the head and the phone antenna varies. When the phone was operated close to the head, the resonant frequency of the antenna decreased by up to 12%. With the output power of 0.6W, as long as the distance was larger than 30mm, the 1-g averaged peak SAR was below the ANSI/IEEE safety guideline, 1.6 W/kg. To synthesize the bone-equivalent material, an epoxy with hardener and a graphite powder were used as basis ingredients, and a small amount of a conducting epoxy was added to control the conductivity of the material. A material having a relative permittivity of 18.04 and a conductivity of 0.347, which are close to those of the bone at 850 MHz, was synthesized.

  • PDF