• 제목/요약/키워드: graphene quantum dot

검색결과 12건 처리시간 0.035초

Direct Comparison of Optical Properties from Graphene Oxide Quantum Dots and Graphene Oxide

  • Jang, Min-Ho;Ha, Hyun Dong;Seo, Tae Seok;Cho, Yong-Hoon
    • Applied Science and Convergence Technology
    • /
    • 제24권4호
    • /
    • pp.111-116
    • /
    • 2015
  • The graphene oxide (GO) and graphene oxide quantum dots (GOQDs), which have gained research interest as new types of light-emitting materials, were synthesized by the modified Hummers method for oxidation of graphite flake and graphite nanoparticle. The optical properties of GO and GOQDs have been compared by mean of photoluminescence (PL), PL excitation (PLE), UV-vis absorbance, and time-resolved PL. The GO have an absorption peak at 229 nm and shoulder part at 310 nm, whereas the GOQDs show broad absorption with a gradual change up without any absorption peaks. The PL emission of GOQDs and GO showed the green color at 520 nm and the red color at 690 nm, respectively. The red emission of GO showed faster PL decay time than the green emission of GOQDs. In particular, the temporal PL profile of the GO showed redshift from 560 nm to 660 nm after the pump event.

이종 계면저항 저감 구조를 적용한 그래핀 양자점 기반의 고체 전해질 특성 (Characteristics of Composite Electrolyte with Graphene Quantum Dot for All-Solid-State Lithium Batteries)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제21권3호
    • /
    • pp.114-118
    • /
    • 2022
  • The stabilized all-solid-state battery structure indicate a fundamental alternative to the development of next-generation energy storage devices. Existing liquid electrolyte structures severely limit battery stability, creating safety concerns due to the growth of Li dendrites during rapid charge/discharge cycles. In this study, a low-dimensional graphene quantum dot layer structure was applied to demonstrate stable operating characteristics based on Li+ ion conductivity and excellent electrochemical performance. Transmission electron microscopy analysis was performed to elucidate the microstructure at the interface. The low-dimensional structure of GQD-based solid electrolytes has provided an important strategy for stable scalable solid-state lithium battery applications at room temperature. This study indicates that the low-dimensional carbon structure of Li-GQDs can be an effective approach for the stabilization of solid-state Li matrix architectures.

Eco-Friendly Emissive ZnO-Graphene QD for Bluish-White Light-Emitting Diodes

  • Kim, Hong Hee;Son, Dong Ick;Hwang, Do-Kyeong;Choi, Won Kook
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.627-627
    • /
    • 2013
  • Recently, most studies concerning inorganic CdSe/ZnS quantum dot (QD)-polymer hybrid LEDs have been concentrated on the structure with multiple layers [1,2]. The QD LEDs used almost CdSe materials for color reproduction such as blue, green and red from the light source until current. However, since Cd is one of six substances banned by the Restriction on Hazardous Substances (RoHS) directive and classified into a hazardous substance for utilization and commercialization as well as for use in life, it was reported that the use of CdSe is not suitable to fabricate a photoelectronic device. In this work, we demonstrate a novel, simple and facile technique for the synthesis of ZnO-graphene quasi-core.shell quantum dots utilizing graphene nanodot in order to overcome Cd material including RoHS materials. Also, We investigate the optical and structural properties of the quantum dots using a number of techniques. In result, At the applied bias 10 V, the device produced bluish-white color of the maximum brightness 1118 cd/$m^2$ with CIE coordinates (0.31, 0.26) at the bias 10 V.

  • PDF

Fabrication of Photo Sensitive Graphene Transistor Using Quantum Dot Coated Nano-Porous Graphene

  • 장야무진;이재현;최순형;임세윤;이종운;배윤경;황종승;황성우;황동목
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.658-658
    • /
    • 2013
  • Graphene is an attractive material for various device applications due to great electrical properties and chemical properties. However, lack of band gap is significant hurdle of graphene for future electrical device applications. In the past few years, several methods have been attempted to open and tune a band gap of graphene. For example, researchers try to fabricate graphene nanoribbon (GNR) using various templates or unzip the carbon nanotubes itself. However, these methods generate small driving currents or transconductances because of the large amount of scattering source at edge of GNRs. At 2009, Bai et al. introduced graphene nanomesh (GNM) structures which can open the band gap of large area graphene at room temperature with high current. However, this method is complex and only small area is possible. For practical applications, it needs more simple and large scale process. Herein, we introduce a photosensitive graphene device fabrication using CdSe QD coated nano-porous graphene (NPG). In our experiment, NPG was fabricated by thin film anodic aluminum oxide (AAO) film as an etching mask. First of all, we transfer the AAO on the graphene. And then, we etch the graphene using O2 reactive ion etching (RIE). Finally, we fabricate graphene device thorough photolithography process. We can control the length of NPG neckwidth from AAO pore widening time and RIE etching time. And we can increase size of NPG as large as 2 $cm^2$. Thin CdSe QD layer was deposited by spin coatingprocess. We carried out NPG structure by using field emission scanning electron microscopy (FE-SEM). And device measurements were done by Keithley 4200 SCS with 532 nm laser beam (5 mW) irradiation.

  • PDF

Solution-Processed Quantum-Dots Light-Emitting Diodes with PVK/PANI:PSS/PEDOT:PSS Hole Transport Layers

  • Park, Young Ran;Shin, Koo;Hong, Young Joon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.146-146
    • /
    • 2015
  • We report the enhanced performance of poly(N-vinylcarbozole) (PVK)/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)-based quantum-dot light-emitting diodes by inserting the polyaniline:poly (p-styrenesulfonic acid) (PANI:PSS) interlayer. The QD-LED with PANI:PSS interlayer exhibited a higher luminance and luminous current efficiency than that without PANI:PSS. Ultraviolet photoelectron spectroscopy results exhibited different electronic energy alignments of QD-LEDs with/without the PANI:PSS interlayer. By inserting the PANI:PSS interlayer, the hole-injection barrier at the QD layer/PVK interface was reduced from 1.45 to 1.23 eV via the energy level down-shift of the PVK layer. The reduced barrier height alleviated the interface carrier charging responsible for the deterioration of the current and luminance efficiency. This suggests that the insertion of PANI:PSS interlayer in QD-LEDs contributed to (i) increase the p-type conductivity and (ii) reduce the hole barrier height of QDs/PVK, which are critical factors leading to improve the efficiency of QD-LEDs.

  • PDF

저결함 그래핀 양자점 구조를 갖는 RGO 나노 복합체 기반의 저항성 메모리 특성 (Memristive Devices Based on RGO Nano-sheet Nanocomposites with an Embedded GQD Layer)

  • 김용우;황성원
    • 반도체디스플레이기술학회지
    • /
    • 제20권1호
    • /
    • pp.54-58
    • /
    • 2021
  • The RGO with controllable oxygen functional groups is a novel material as the active layer of resistive switching memory through a reduction process. We designed a nanoscale conductive channel induced by local oxygen ion diffusion in an Au / RGO+GQD / Al resistive switching memory structure. A strong electric field was locally generated around the Al metal channel generated in BIL, and the local formation of a direct conductive low-dimensional channel in the complex RGO graphene quantum dot region was confirmed. The resistive memory design of the complex RGO graphene quantum dot structure can be applied as an effective structure for charge transport, and it has been shown that the resistive switching mechanism based on the movement of oxygen and metal ions is a fundamental alternative to understanding and application of next-generation intelligent semiconductor systems.

Excitation Energy Induced S-shaped PL behavior in Graphene Quantum Dots

  • 장민호;조용훈
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.351.2-351.2
    • /
    • 2016
  • Graphene quantum dots (GQDs) have attracted much attention because of various advantages such as cost-effectiveness of synthesis, low toxicity, and photostability. The origins of photoluminescence (PL) in GQDs were suggested as the intrinsic states for localized sp2 carbon domains and the extrinsic states formed by oxygen-functional groups.[1,2] Nevertheless, it is still unclear to understand the information of electric band structure in GQD. Here, we observed excitation energy induced S-shaped PL behavior. The PL peak energy position shows an S-shaped shift (redshift-blueshift-redshift) as function of the excitation wavelengths. From various samples, we only observed S-shaped PL shift in the GQDs with both luminescent origins of intrinsic and extrinsic states. Therefore, this S-shaped PL shift is related to different weight of intrinsic and extrinsic states in PL spectrum depending on the excitation wavelengths. This would be the key result to understand the electric band structure of the GQDs and its derivatives.

  • PDF

용액 공정을 통한 그래핀 양자점 삽입형 유/무기 하이브리드 태양전지 제작 (Graphene Quantum Dot Interfacial Layer for Organic/Inorganic Hybrid Photovoltaics Prepared by a Facile Solution Process)

  • 김영준;박병남
    • 한국산학기술학회논문지
    • /
    • 제19권6호
    • /
    • pp.646-651
    • /
    • 2018
  • 최근 태양전지의 Donor/Acceptor 계면에 그래핀 양자점을 완충 층으로 삽입하여 광 전환 효율을 향상시킨 많은 연구 결과들이 보고되었다. 그래핀 양자점은 그래핀 단일 층이 여러 겹 쌓여서 구성된 수 나노미터 크기의 물질로, 양자 제한 효과에 의한 밴드갭 조절이 가능하다는 장점을 가지고 있다. 하지만 대부분의 그래핀 양자점을 활용한 연구에서 레이저 분쇄나 수열 처리 등과 같은 복잡하고 접근성이 떨어지는 용액 공정들이 박막 형성에 사용되고 있다. 본 연구에서는 Indium tin oxide(ITO)/$TiO_2$/Poly(3-hexylthiophene)(P3HT)/Al 구조로 구성된 태양전지의 Donor/Acceptor 계면에 그래핀 양자점을 단순한 초음파 처리를 통해 용매에 분산시켜 박막 공정에 사용하였음에도 불구하고, 단락 전류를 $1.26{\times}10^{-5}A/cm^2$에서 $7.46{\times}10^{-5}A/cm^2$으로, 곡선인자(Fill factor)를 0.27에서 0.42로 향상된 결과를 확인하였다. 이러한 결과를 트랜지스터 구조의 소자를 활용한 전기적 성질 확인과 순환 전압-전류법을 통한 에너지 레벨 분석 및 가시광 흡수 스펙트럼 분석 등을 통하여 고찰하였다. 본 연구 결과를 통해 그래핀 양자점 용액 공정이 복잡한 처리 공정 없이도, 보다 폭넓게 활용 가능할 것으로 예상된다.

InGaN/GaN Micro-LED구조를 위한 그래핀 양자점 기반의 산화막 기판 특성 (Characteristics of Graphene Quantum Dot-Based Oxide Substrate for InGaN/GaN Micro-LED Structure)

  • 황성원
    • 반도체디스플레이기술학회지
    • /
    • 제20권3호
    • /
    • pp.167-171
    • /
    • 2021
  • The core-shell InGaN/GaN Multi Quantum Well-Nanowires (MQW-NWs) that were selectively grown on oxide templates with perfectly circular hole patterns were highly crystalline and were shaped as high-aspect-ratio pyramids with semi-polar facets, indicating hexagonal symmetry. The formation of the InGaN active layer was characterized at its various locations for two types of the substrates, one containing defect-free MQW-NWs with GQDs and the other containing MQW-NWs with defects by using HRTEM. The TEM of the defect-free NW showed a typical diode behavior, much larger than that of the NW with defects, resulting in stronger EL from the former device, which holds promise for the realization of high-performance nonpolar core-shell InGaN/GaN MQW-NW substrates. These results suggest that well-defined nonpolar InGaN/GaN MQW-NWs can be utilized for the realization of high-performance LEDs.

Possibility of Benzene Exposure in Workers of a Semiconductor Industry Based on the Patent Resources, 1990-2010

  • Choi, Sangjun;Park, Donguk;Park, Yunkyung
    • Safety and Health at Work
    • /
    • 제12권3호
    • /
    • pp.403-415
    • /
    • 2021
  • Background: This study aimed to assess the possibility of benzene exposure in workers of a Korean semiconductor manufacturing company by reviewing the issued patents. Methods: A systematic patent search was conducted with the Google "Advanced Patent Search" engine using the keywords "semiconductor" and "benzene" combined with all of the words accessed on January 24, 2016. Results: As a result of the search, we reviewed 75 patent documents filed by a Korean semiconductor manufacturing company from 1994 to 2010. From 22 patents, we found that benzene could have been used as one of the carbon sources in chemical vapor deposition for capacitor; as diamond-like carbon for solar cell, graphene formation, or etching for transition metal thin film; and as a solvent for dielectric film, silicon oxide layer, nanomaterials, photoresist, rise for immersion lithography, electrophotography, and quantum dot ink. Conclusion: Considering the date of patent filing, it is possible that workers in the chemical vapor deposition, immersion lithography, and graphene formation processes could be exposed to benzene from 1996 to 2010.