• 제목/요약/키워드: graphene platelet reinforced beams

검색결과 4건 처리시간 0.018초

Finite element based modeling and thermal dynamic analysis of functionally graded graphene reinforced beams

  • Al-Maliki, Ammar F.H.;Ahmed, Ridha A.;Moustafa, Nader M.;Faleh, Nadhim M.
    • Advances in Computational Design
    • /
    • 제5권2호
    • /
    • pp.177-193
    • /
    • 2020
  • In the present research, dynamic analysis of functionally graded (FG) graphene-reinforced beams under thermal loading has been carried out based on finite element approach. The presented formulation is based on a higher order refined beam element accounting for shear deformations. The graphene-reinforced beam is exposed to transverse periodic mechanical loading. Graphene platelets have three types of dispersion within the structure including uniform-type, linear-type and nonlinear-type. Convergences and validation studies of derived results from finite element approach are also presented. This research shows that the resonance behavior of a nanocomposite beam can be controlled by the GPL content and dispersions. Therefore, it is showed that the dynamical deflections are notably influenced by GPL weight fractions, types of GPL distributions, temperature changes, elastic foundation and harmonic load excitation frequency.

On the resonance problems in FG-GPLRC beams with different boundary conditions resting on elastic foundations

  • Hao-Xuan, Ding;Yi-Wen, Zhang;Gui-Lin, She
    • Computers and Concrete
    • /
    • 제30권6호
    • /
    • pp.433-443
    • /
    • 2022
  • In the current paper, the nonlinear resonance response of functionally graded graphene platelet reinforced (FG-GPLRC) beams by considering different boundary conditions is investigated using the Euler-Bernoulli beam theory. Four different graphene platelets (GPLs) distributions including UD and FG-O, FG-X, and FG-A are considered and the effective material parameters are calculated by Halpin-Tsai model. The nonlinear vibration equations are derived by Euler-Lagrange principle. Then the perturbation method is used to discretize the motion equations, and the loadings and displacement are all expanded, so as to obtain the first to third order perturbation equations, and then the asymptotic solution of the equations can be obtained. Then the nonlinear amplitude-frequency response is obtained with the help of the modified Lindstedt-Poincare method (Chen and Cheung 1996). Finally, the influences of the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions on the resonance problems are comprehensively studied. Results show that the distribution types of GPLs, total GPLs layers, GPLs weight fraction, elastic foundations and boundary conditions have a significant effect on the nonlinear resonance response of FG-GPLRC beams.

Multiscale bending and free vibration analyses of functionally graded graphene platelet/ fiber composite beams

  • Garg, A.;Mukhopadhyay, T.;Chalak, H.D.;Belarbi, M.O.;Li, L.;Sahoo, R.
    • Steel and Composite Structures
    • /
    • 제44권5호
    • /
    • pp.707-720
    • /
    • 2022
  • In the present work, bending and free vibration analyses of multilayered functionally graded (FG) graphene platelet (GPL) and fiber-reinforced hybrid composite beams are carried out using the parabolic function based shear deformation theory. Parabolic variation of transverse shear stress across the thickness of beam and transverse shear stress-free conditions at top and bottom surfaces of the beam are considered, and the proposed formulation incorporates a transverse displacement field. The present theory works only with four unknowns and is computationally efficient. Hamilton's principle has been employed for deriving the governing equations. Analytical solutions are obtained for both the bending and free vibration problems in the present work considering different variations of GPLs and fibers distribution, namely, FG-X, FG-U, FG-Λ, and FG-O for beams having simply-supported boundary condition. First, the matrix is assumed to be strengthened using GPLs, and then the fibers are embedded. Multiscale modeling for material properties of functionally graded graphene platelet/fiber hybrid composites (FG-GPL/FHRC) is performed using Halpin-Tsai micromechanical model. The study reveals that the distributions of GPLs and fibers have significant impacts on the stresses, deflections, and natural frequencies of the beam. The number of layers and shape factors widely affect the behavior of FG-GPL-FHRC beams. The multilayered FG-GPL-FHRC beams turn out to be a good approximation to the FG beams without exhibiting the stress-channeling effects.

Thermal post-buckling analysis of graphene platelets reinforced metal foams beams with initial geometric imperfection

  • Gui-Lin She;Yin-Ping Li;Yujie He;Jin-Peng Song
    • Computers and Concrete
    • /
    • 제33권3호
    • /
    • pp.241-250
    • /
    • 2024
  • This article investigates the thermal and post-buckling problems of graphene platelets reinforced metal foams (GPLRMF) beams with initial geometric imperfection. Three distribution forms of graphene platelet (GPLs) and foam are employed. This article utilizes the mixing law Halpin Tsai model to estimate the physical parameters of materials. Considering three different boundary conditions, we used the Euler beam theory to establish the governing equations. Afterwards, the Galerkin method is applied to discretize these equations. The correctness of this article is verified through data analysis and comparison with the existing articles. The influences of geometric imperfection, GPL distribution modes, boundary conditions, GPLs weight fraction, foam distribution pattern and foam coefficient on thermal post-buckling are analyzed. The results indicate that, perfect GPLRMF beams do not undergo bifurcation buckling before reaching a certain temperature, and the critical buckling temperature is the highest when both ends are fixed. At the same time, the structural stiffness of the beam under the GPL-A model is the highest, and the buckling response of the beam under the Foam-II mode is the lowest, and the presence of GPLs can effectively improve the buckling strength.