• 제목/요약/키워드: graphene addition

검색결과 189건 처리시간 0.033초

슈퍼커패시터를 위한 그래핀 기반 전극의 전기화학적 특성에 대한 카본블랙 도입의 효과 (Influence of carbon black on electrochemical performance of graphene-based electrode for supercapacitor)

  • 김기석;박수진
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.95.1-95.1
    • /
    • 2011
  • In this work, graphene was prepared by modified Hummers method and prepared graphene was applied to electrode materials for supercapacitor. In addition, to enhance the electrochemical performance of graphene, carbon black was deposited onto graphene via chemical reduction. The effect of the carbon black content incorporated on the electrochemical properties of the graphene-based electrodes was investigated. It was found that nano-scaled carbon black aggregates were deposited and dispersed onto the graphene by the chemical reduction of acid treated carbon black and graphite oxide. From the cyclic voltammograms, carbon black-deposited graphene (CB-GR) showed improved electrochemical performance, i.e., current density, quicker response, and better specific capacitance than that of pristine graphene. This indicates that the carbon black deposited onto graphene served as an conductive materials between graphene layers, leading to reducing the contact resistance of graphene and resulted in the increase of the charge transfer between graphene layers by bridge effect.

  • PDF

Fundamental Issues in Graphene: Material Properties and Applications

  • Choi, Sung-Yool
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.67-67
    • /
    • 2012
  • Graphene, two-dimensional one-atom-thick planar sheet of carbon atoms densely packed in a honeycomb crystal lattice, exhibits fascinating electrical properties, such as a linear energy dispersion relation and high mobility in addition to a wide-range optical absorption and high thermal conductivity. Graphene's outstanding tensile strength allows graphene-based electronic and photonic devices to be flexible, bendable, or even stretchable. Recently many groups have reported high performance electronic and optoelectronic devices based on graphene materials, i.e. field-effect transistors, gas sensors, nonvolatile memory devices, and plasmonic waveguides, in which versatile properties of graphene materials have been incorporated into a flexible electronic or optoelectronic platform. However, there are several fundamental or technological hurdles to be overcome in real applications of graphene in electronics and optoelectronics. In this tutorial we will present a short introduction to the basic material properties and recent progresses in applications of graphene to electronics and optoelectronics and discuss future outlook of graphene-based devices.

  • PDF

The Electrochemical Performance of Li3V2(PO4)3/Graphene Nano-powder Composites as Cathode Material for Li-ion Batteries

  • Choi, Mansoo;Kim, Hyun-Soo;Lee, Young Moo;Jin, Bong-Soo
    • Journal of Electrochemical Science and Technology
    • /
    • 제5권4호
    • /
    • pp.109-114
    • /
    • 2014
  • The $Li_3V_2(PO_4)_3$/graphene nano-particles composite was successfully synthesized by a facile sol-gel method. The addition of a graphene in $Li_3V_2(PO_4)_3(LVP)$(LVP) showed the high crystallinity and influenced the morphology of the $Li_3V_2(PO_4)_3$ particles observed in X-ray diffraction (XRD) and scanning electron microscopy (SEM). The LVP/graphene samples were well connected, resulting in fast charge transfer. The effect of the addition graphene nano-particles on electrochemical performance of the materials was investigated. Compared with the pristine LVP, the LVP/graphene composite delivered a higher discharge capacity of $122mAh\;g^{-1}$ at 0.1 C-rate, better rate capability and cyclability in the potential range of 3.0-4.3 V. The electrochemical impedance spectra (EIS) measurement showed the improved electronic conductivity for the LVP/graphene composite, which can ensure the high specific capacity and rate capability.

Highly Sensitive Tactile Sensor Using Single Layer Graphene

  • Jung, Hyojin;Kim, Youngjun;Jin, Hyungki;Chun, Sungwoo;Park, Wanjun
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.229.1-229.1
    • /
    • 2014
  • Tactile sensors have widely been researched in the areas of electronics, robotic system and medical tools for extending to the form of bio inspired devices that generate feeling of touch mimicking those of humans. Recent efforts in adapting the tactile sensor have included the use of novel materials with both scalability and high sensitivity [1]. Graphene, a 2-D allotrope of carbon, is a prospective candidate for sensor technology, having strong mechanical properties [2] and flexibility, including recovery from mechanical stress. In addition, its truly 2-D nature allows the formation of continuous films that are intrinsically useful for realizing sensing functions. However, very few investigations have been carrier out to investigate sensing characteristics as a device form with the graphene subjected to strain/stress and pressure effects. In this study, we present a sensor of vertical forces based on single-layer graphene, with a working range that corresponds to the pressure of a gentle touch that can be perceived by humans. In spite of the low gauge factor that arises from the intrinsic electromechanical character of single-layer graphene, we achieve a resistance variation of about 30% in response to an applied vertical pressure of 5 kPa by introducing a pressure-amplifying structure in the sensor. In addition, we demonstrate a method to enhance the sensitivity of the sensor by applying resistive single-layer graphene.

  • PDF

나노구조 (W,Ti)C-Graphene 복합재료 급속소결 (Rapid Sintering of Nanocrystalline (W,Ti)C-Graphene Composites)

  • 김성은;손인진
    • 대한금속재료학회지
    • /
    • 제56권12호
    • /
    • pp.854-860
    • /
    • 2018
  • In spite of the many attractive properties of (W,Ti)C, its low fracture toughness limits its wide application. To improve the fracture toughness generally a second phase is added to fabricate a nanostructured composite. In this regard, graphene was considered as the reinforcing agent of (W,Ti)C. (W,Ti)C-graphene composites that were sintered within 2 min using pulsed current activated heating under a pressure of 80 MPa. The rapid consolidation method allowed retention of the nano-scale microstructure by blocking the grain growth. The effect of graphene on the hardness and microstructure of the (W,Ti)C-graphene composite was studied using a Vickers hardness tester and FE-SEM. The grain size of (W,Ti)C was reduced remarkably by the addition of graphene. Furthermore, the hardness decreased and the fracture toughness improved with the addition of graphene.

Synthesis of Thermally Reduced Graphene Sheets Using Poly(ionic liquid)

  • 이현욱;김태영;서광석
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2010년도 하계학술대회 논문집
    • /
    • pp.256-256
    • /
    • 2010
  • It is demonstrated that graphene sheets are produced via thermal reduction of graphene oxide (GO) in the presence of imidazoium-based poly (ionic liquid) (PIL). PILs plays an important role in minimizing the reduction time and dispersing graphene sheets in organic solvents. In addition, as-obtained graphene sheets are found to be functionalized with PIL molecules by the strong interaction of PIL and the graphene, as analyzed by various physical methods such as atomic force microscopy (AFM), X-ray photoelectric spectroscopy (XPS) and Raman spectroscopy. Such a strong interaction allows the successful production of graphene/PIL composites, in which their electrical properties are controllable by the loading level of graphene in the PIL matrix.

  • PDF

Graphene Derivatives for Bioapplications: Cellular Response to Graphene and Behaviors of Mammalian Cells

  • Min, Dal-Hee
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.7-7
    • /
    • 2011
  • Graphene and graphene derivatives have attracted enormous attention from various research fields for applications in electronic devices, transparent electrodes, biosensors, drug delivery system and surface coatings. In the viewpoint of chemist, the chemical structure of graphene derivatives seems intriguing but detailed structures are being revealed only recently while engineering approaches for various applications are being executed very actively. In addition, cytotoxicity and mammalian cellular responses to graphene have not thoroughly investigated yet in spite of the importance in bio-applications and environment. In this talk, I'll introduce recent studies which report cytotoxicity and behaviors of mammalian cells when the cells are exposed to graphene (as well as some bio-applications of graphene), especially to get closer to answers to these questions, "how we understand and how/why we use graphene in biotechnology".

  • PDF

Y2O3-stabilized ZrO2, Ni, and graphene-added Mg by reactive mechanical grinding processing for hydrogen storage and comparison with Ni and Fe2O3 or MnO-added Mg

  • Song, Myoung Youp;Choi, Eunho;Kwak, Young Jun
    • Journal of Ceramic Processing Research
    • /
    • 제20권6호
    • /
    • pp.609-616
    • /
    • 2019
  • The optimum powder to ball ratio was examined, which is one of the important conditions in reactive mechanical grinding processing. Yttria (Y2O3)-stabilized zirconia (ZrO2) (YSZ), Ni, and graphene were chosen as additives to enhance the hydriding and dehydriding rates of Mg. Samples with a composition of 92.5 wt% Mg + 2.5 wt% YSZ + 2.5 wt% Ni + 2.5 wt% graphene (designated as Mg-2.5YSZ-2.5Ni-2.5graphene) were prepared by grinding in hydrogen atmosphere. Mg-2.5YSZ-2.5Ni-2.5graphene had a high effective hydrogen-storage capacity of almost 7 wt% (6.85 wt%) at 623 K in 12 bar H2 at the second cycle (n = 2). Mg-2.5YSZ-2.5Ni-2.5graphene contained Mg2Ni phase after hydriding-dehydriding cycling. Mg-2.5YSZ-2.5Ni-2.5graphene had a larger quantity of hydrogen absorbed for 60 min, Ha (60 min), than Mg-2.5Ni-2.5graphene and Mg-2.5graphene. The addition of YSZ also increased the initial dehydriding rate and the quantity of hydrogen released for 60 min, Hd (60 min), compared with those of Mg-2.5Ni-2.5graphene. Y2O3-stabilized ZrO2, Ni, and graphene-added Mg had a higher initial hydriding rate and a larger Ha (60 min) than Fe2O3, MnO, or Ni and Fe2O3-added Mg at n = 1.

Mechanisms of Na adsorption on graphene and graphene oxide: density functional theory approach

  • Moon, Hye Sook;Lee, Ji Hye;Kwon, Soonchul;Kim, Il Tae;Lee, Seung Geol
    • Carbon letters
    • /
    • 제16권2호
    • /
    • pp.116-120
    • /
    • 2015
  • We investigated the adsorption of Na on graphene and graphene oxide, which are used as anode materials in sodium ion batteries, using density functional theory. The adsorption energy for Na on graphene was -0.507 eV at the hollow sites, implying that adsorption was favorable. In the case of graphene oxide, Na atoms were separately adsorbed on the epoxide and hydroxyl functional groups. The adsorption of Na on graphene oxide-epoxide (adsorption energy of -1.024 eV) was found to be stronger than the adsorption of Na on pristine graphene. However, the adsorption of Na on graphene oxide-hydroxyl resulted in the generation of NaOH as a by-product. Using density of states (DOS) calculations, we found that the DOS of the Na-adsorbed graphene was shifted down more than that of the Na-adsorbed graphene oxide-epoxide. In addition, the intensity of the DOS around the Fermi level for the Na-adsorbed graphene was higher than that for the Na-adsorbed graphene oxide-epoxide.

Thermal Chemical Vapor Deposition of Graphene Layers

  • Kwon, Kyoeng-Woo;Do, Woo-Ri;Hwang, Jinha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.644-644
    • /
    • 2013
  • Graphene is a two-dimensional sp2 layer material. Despite the short history in the empirical synthesis of the graphene layers, the academic/industrial unique features have brought highly significant interest in research and development related to graphene-related materials. In particular, the electrical and optical performances have been targeted towards pre-existing microelectronicand emerging nanoelectronic applications. The graphene synthesis relies on a variety of processing factors, such as temperature, pressure, and gas ratios involving H2, CH4, and Ar, in addition to the inherent selection of copper substrates. The current work places its emphasis on the role of experimental factors in growing graphene thin films. The thermally-grown graphene layers are characterized using physical/chemical analyses, i.e., four point resistance measurements, Raman spectroscopy, and UV-Visible spectrophotometry. Ultimately, an optimization strategy is proposed in growing high-quality graphene layers well-controlled through empirical factors.

  • PDF