• Title/Summary/Keyword: graph-based approach

Search Result 284, Processing Time 0.032 seconds

Lattice Conditional Independence Models Based on the Essential Graph (에센셜 그래프를 바탕으로 한 격자 조건부 독립 모델)

  • Ju Sung, Kim;Myoong Young, Yoon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.2
    • /
    • pp.9-16
    • /
    • 2004
  • Recently, lattice conditional independence models(LCIMs) have been introduced for the analysis of non-monotone missing data patterns and of non-nested dependent regression models. This approach has been successfully applied to solve various problems in data pattern analysis, however, it suffers from computational burden to search LCIMs. In order to cope with this drawback, we propose a new scheme for finding LCIMs based on the essential graph. Also, we show that the class of LCIMs coincides with the class of all transitive acyclic directed graph(TADG) models which are Markov equivalent to a specific acyclic directed graph(ADG) models.

  • PDF

A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM (준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구)

  • Jung, Jaehoon;Yoon, Sanghyun;Cyrill, Stachniss;Heo, Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.32-42
    • /
    • 2016
  • In Korea, the absence of BIM use in existing civil structures and buildings is driving a demand for as-built BIM. As-built BIMs are often created using laser scanners that provide dense 3D point cloud data. Conventional static laser scanning approaches often suffer from limitations in their operability due to the difficulties in moving the equipment, the selection of scanning location, and the requirement of placing targets or extracting tie points for registration of each scanned point cloud. This paper aims at reducing the manual effort using a kinematic 3D laser scanning system based on graph-based simultaneous localization and mapping (SLAM) for continuous indoor mapping. The robotic platform carries three 2D laser scanners: the front scanner is mounted horizontally to compute the robot's trajectory and to build the SLAM graph; the other two scanners are mounted vertically to scan the profiles of surrounding environments. To reduce the accumulated error in the trajectory of the platform through loop closures, the graph-based SLAM system incorporates AdaBoost loop closure approach, which is particularly suitable for the developed multi-scanner system providing more features than the single-scanner system for training. We implemented the proposed method and evaluated it in two indoor test sites. Our experimental results show that the false positive rate was reduced by 13.6% and 7.9% for the two dataset. Finally, the 2D and 3D mapping results of the two test sites confirmed the effectiveness of the proposed graph-based SLAM.

An Iterative Approach to Graph-based Word Sense Disambiguation Using Word2Vec (Word2Vec을 이용한 반복적 접근 방식의 그래프 기반 단어 중의성 해소)

  • O, Dongsuk;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.43-60
    • /
    • 2016
  • Recently, Unsupervised Word Sense Disambiguation research has focused on Graph based disambiguation. Graph-based disambiguation has built a semantic graph based on words collocated in context or sentence. However, building such a graph over all ambiguous word lead to unnecessary addition of edges and nodes (and hence increasing the error). In contrast, our work uses Word2Vec to consider the most similar words to an ambiguous word in the context or sentences, to rebuild a graph of the matched words. As a result, we show a higher F1-Measure value than the previous methods by using Word2Vec.

  • PDF

A Parallel Algorithm for Measuring Graph Similarity Using CUDA on GPU (GPU에서 CUDA를 이용한 그래프 유사도 측정을 위한 병렬 알고리즘)

  • Son, Min-Young;Kim, Young-Hak;Choi, Sung-Ja
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.3
    • /
    • pp.156-164
    • /
    • 2017
  • Measuring the similarity of two graphs is a basic tool to solve graph problems in various applications. Most graph algorithms have a high time complexity according to the number of vertices and edges. Because Graphics Processing Units (GPUs) have a high computational power and can be obtained at a low cost, these have been widely used in graph applications to improve execution time. This paper proposes an efficient parallel algorithm to measure graph similarity using the CUDA on a GPU environment. The experimental results show that the proposed approach brings a considerable improvement in performance and efficiency when compared to CPU-based results. Our results also show that the performance is improved significantly as the size of the graph increases.

Efficient Classification of High Resolution Imagery for Urban Area

  • Lee, Sang-Hoon
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.717-728
    • /
    • 2011
  • An efficient method for the unsupervised classification of high resolution imagery is suggested in this paper. It employs pixel-linking and merging based on the adjacency graph. The proposed algorithm uses the neighbor lines of 8 directions to include information in spatial proximity. Two approaches are suggested to employ neighbor lines in the linking. One is to compute the dissimilarity measure for the pixel-linking using information from the best lines with the smallest non. The other is to select the best directions for the dissimilarity measure by comparing the non-homogeneity of each line in the same direction of two adjacent pixels. The resultant partition of pixel-linking is segmented and classified by the merging based on the regional and spectral adjacency graphs. This study performed extensive experiments using simulation data and a real high resolution data of IKONOS. The experimental results show that the new approach proposed in this study is quite effective to provide segments of high quality for object-based analysis and proper land-cover map for high resolution imagery of urban area.

Performance Improvement of Iterative Demodulation and Decoding for Spatially Coupling Data Transmission by Joint Sparse Graph

  • Liu, Zhengxuan;Kang, Guixia;Si, Zhongwei;Zhang, Ningbo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5401-5421
    • /
    • 2016
  • Both low-density parity-check (LDPC) codes and the multiple access technique of spatially coupling data transmission (SCDT) can be expressed in bipartite graphs. To improve the performance of iterative demodulation and decoding for SCDT, a novel joint sparse graph (JSG) with SCDT and LDPC codes is constructed. Based on the JSG, an approach for iterative joint demodulation and decoding by belief propagation (BP) is presented as an exploration of the flooding schedule, and based on BP, density evolution equations are derived to analyze the performance of the iterative receiver. To accelerate the convergence speed and reduce the complexity of joint demodulation and decoding, a novel serial schedule is proposed. Numerical results show that the joint demodulation and decoding for SCDT based on JSG can significantly improve the system's performance, while roughly half of the iterations can be saved by using the proposed serial schedule.

Graph-based modeling for protein function prediction (단백질 기능 예측을 위한 그래프 기반 모델링)

  • Hwang Doosung;Jung Jae-Young
    • The KIPS Transactions:PartB
    • /
    • v.12B no.2 s.98
    • /
    • pp.209-214
    • /
    • 2005
  • The use of protein interaction data is highly reliable for predicting functions to proteins without function in proteomics study. The computational studies on protein function prediction are mostly based on the concept of guilt-by-association and utilize large-scale interaction map from revealed protein-protein interaction data. This study compares graph-based approaches such as neighbor-counting and $\chi^2-statistics$ methods using protein-protein interaction data and proposes an approach that is effective in analyzing large-scale protein interaction data. The proposed approach is also based protein interaction map but sequence similarity and heuristic knowledge to make prediction results more reliable. The test result of the proposed approach is given for KDD Cup 2001 competition data along with those of neighbor-counting and $\chi^2-statistics$ methods.

An Approach for Generating Story-Plot Using Association Analysis of Narrative Patterns (서사 패턴의 연관분석을 통한 이야기 장면 생성 방법)

  • Kim, Jung-Il;Lee, Eun-Joo
    • Journal of Information Technology Services
    • /
    • v.12 no.1
    • /
    • pp.247-257
    • /
    • 2013
  • A narrative structure is essential for a story generator to create a story plot. In digital storytelling system, a narrative structure can be generally designed as a tree or a graph, and the story generator in the digital storytelling system creates continuous story plots based on the narrative structure. When a narrative structure is designed with a tree or a graph, it is hard for the story generator to create various kinds of story-plots due to the inflexible nature of a tree or graph structure. It may result in degrading the quality of story-plots to provide similar story-plot to various kind of user. In this paper, we proposed an approach to create a story-plot based on association analysis of data mining to overcome the disadvantage. In detail, we defined a narrative structure which consists of narrative patterns, and then implemented a story generator which creates a story-plot using the proposed narrative structure. As a result, we confirmed that implemented story generator was able to create a story-plot according to understanding level of user in case study.

Indexing of XML with B+-tree (B+-tree를 이용한 XML 색인기법)

  • Kwon, Guk-Bong;Hong, Dong-Kweon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.1
    • /
    • pp.94-100
    • /
    • 2006
  • Computing paradigm shift to internet-based one has accelerated the use of XML in diverse applications. This phenomena has made the explosive increases of XML data and it triggered many active researches in maintaining very huge amount of XML data in turn. In this paper we present a persistent graph-based XML indexing lot data-centric XML data. In our approach we use 3 graphs to represent XML indexes and XML data itself. They are schema graph, data graph index. And then we have mapped those graphs to B+-trees the persistency. With our approach we can achieve linear query execution time with the increase of XML sizes.

Improving Accuracy of Chapter-level Lecture Video Recommendation System using Keyword Cluster-based Graph Neural Networks

  • Purevsuren Chimeddorj;Doohyun Kim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.7
    • /
    • pp.89-98
    • /
    • 2024
  • In this paper, we propose a system for recommending lecture videos at the chapter level, addressing the balance between accuracy and processing speed in chapter-level video recommendations. Specifically, it has been observed that enhancing recommendation accuracy reduces processing speed, while increasing processing speed decreases accuracy. To mitigate this trade-off, a hybrid approach is proposed, utilizing techniques such as TF-IDF, k-means++ clustering, and Graph Neural Networks (GNN). The approach involves pre-constructing clusters based on chapter similarity to reduce computational load during recommendations, thereby improving processing speed, and applying GNN to the graph of clusters as nodes to enhance recommendation accuracy. Experimental results indicate that the use of GNN resulted in an approximate 19.7% increase in recommendation accuracy, as measured by the Mean Reciprocal Rank (MRR) metric, and an approximate 27.7% increase in precision defined by similarities. These findings are expected to contribute to the development of a learning system that recommends more suitable video chapters in response to learners' queries.