• 제목/요약/키워드: graph deep clustering

검색결과 4건 처리시간 0.016초

지능형 교통 시스템을 위한 Graph Neural Networks 기반 교통 속도 예측 (Traffic Speed Prediction Based on Graph Neural Networks for Intelligent Transportation System)

  • 김성훈;박종혁;최예림
    • 한국ITS학회 논문지
    • /
    • 제20권1호
    • /
    • pp.70-85
    • /
    • 2021
  • 최근 활발히 연구되는 딥러닝 방법론은 인공지능의 성능을 급속도로 향상시켰고, 이에 따라 다양한 산업 분야에서 딥러닝을 활용한 시스템이 제시되고 있다. 교통 시스템에서는 GNN을 활용한 공간-시간 그래프 모델링이 교통 속도 예측에 효과적인 것으로 밝혀졌지만, 이는 메모리 병목 현상을 유발하기 때문에 모델이 비효율적으로 학습된다는 단점이 있다. 따라서 본 연구에서는 그래프 분할 방법을 통해 도로 네트워크를 분할하여 메모리 병목 현상을 완화함과 동시에 우수한 성능을 달성하고자 한다. 제안 방법론을 검증하기 위해 인천시 UTIC 데이터 분석 결과를 바탕으로 Jensen-Shannon divergence를 사용하여 도로 속도 분포의 유사도를 측정하였다. 그리고 측정된 유사도를 바탕으로 스펙트럴 클러스터링을 수행하여 도로 네트워크를 군집화하였다. 성능 측정 결과, 도로 네트워크가 7개의 네트워크로 분할되었을 때 MAE 기준 5.52km/h의 오차로 비교 모델 대비 가장 우수한 정확도를 보임과 동시에 메모리 병목 현상 또한 완화되는 것을 확인할 수 있었다.

Gated Multi-channel Network Embedding for Large-scale Mobile App Clustering

  • Yeo-Chan Yoon;Soo Kyun Kim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1620-1634
    • /
    • 2023
  • This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.

Student Group Division Algorithm based on Multi-view Attribute Heterogeneous Information Network

  • Jia, Xibin;Lu, Zijia;Mi, Qing;An, Zhefeng;Li, Xiaoyong;Hong, Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권12호
    • /
    • pp.3836-3854
    • /
    • 2022
  • The student group division is benefit for universities to do the student management based on the group profile. With the widespread use of student smart cards on campus, especially where students living in campus residence halls, students' daily activities on campus are recorded with information such as smart card swiping time and location. Therefore, it is feasible to depict the students with the daily activity data and accordingly group students based on objective measuring from their campus behavior with some regular student attributions collected in the management system. However, it is challenge in feature representation due to diverse forms of the student data. To effectively and comprehensively represent students' behaviors for further student group division, we proposed to adopt activity data from student smart cards and student attributes as input data with taking account of activity and attribution relationship types from different perspective. Specially, we propose a novel student group division method based on a multi-view student attribute heterogeneous information network (MSA-HIN). The network nodes in our proposed MSA-HIN represent students with their multi-dimensional attribute information. Meanwhile, the edges are constructed to characterize student different relationships, such as co-major, co-occurrence, and co-borrowing books. Based on the MSA-HIN, embedded representations of students are learned and a deep graph cluster algorithm is applied to divide students into groups. Comparative experiments have been done on a real-life campus dataset collected from a university. The experimental results demonstrate that our method can effectively reveal the variability of student attributes and relationships and accordingly achieves the best clustering results for group division.

클러스터링 알고리즘 기반의 임베딩 기법 성능 비교 및 분석 (Performance Comparison and Analysis of Embedding methods based on Clustering Algorithms)

  • 박정민;박희민;양선아;순위샹;이용주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2021년도 추계학술대회
    • /
    • pp.164-167
    • /
    • 2021
  • 최근 구글, 아마존, LOD 등을 중심으로 지식 그래프(Knowledge graph)와 같은 검색 고도화 연구가 활발히 수행되고 있다.그러나 대규모 지식 그래프 인덱싱 시스템에서 데이터가 어떻게 임베딩(embedding)되고, 딥러닝(deep learning) 되는지는 상대적으로 거의 연구가 되지 않고 있다. 이에 본 논문에서는 임베딩 모델에 대한 성능평가를 통해 데이터셋에 대해 어떤 모델이 가장 좋은 지식 임베딩 방법을 도출하는지 분석한다.

  • PDF