• Title/Summary/Keyword: graph cuts

Search Result 29, Processing Time 0.028 seconds

Hierarchical Stereo Matching with Color Information (영상의 컬러 정보를 이용한 계층적 스테레오 정합)

  • Kim, Tae-June;Yoo, Ji-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.3C
    • /
    • pp.279-287
    • /
    • 2009
  • In this paper, a hierarchical stereo matching with color information is proposed. To generate an initial disparity map, feature based stereo matching is carried out and to generate a final disparity map, hierarchical stereo matching is carried out. The boundary (edge) region is obtained by segmenting a given image into R, G, B and White components. From the obtained boundary, disparity is extracted. The initial disparity map is generated when the extracted disparity is spread to the surrounding regions by evaluating autocorrelation from each color region. The initial disparity map is used as an initial value for generating the final disparity map. The final disparity map is generated from each color region by changing the size of a block and the search range. 4 test images that are provided by Middlebury stereo vision are used to evaluate the performance of the proposed algorithm objectively. The experiment results show better performance compared to the Graph-cuts and Dynamic Programming methods. In the final disparity map, about 11% of the disparities for the entire image were inaccurate. It was verified that the boundary for the non-contiguous point was clear in the disparity map.

Better Foreground Segmentation for 3D Face Reconstruction using Graph Cuts (3차원 얼굴 복원을 위한 그래프 컷 기반의 전경 물체 추출 방법)

  • Park, An-Jin;Hong, Kwang-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.459-464
    • /
    • 2007
  • 영상기반의 3자원 복원(reconstruction)에 대한 연구가 컴퓨터 성능의 발전과 다양한 영상기반의 복원 알고리즘의 연구로 인해 최근 좋은 결과를 보이고 있으나, 이는 얼굴영역과 같은 목적이 되는 영역이 각 입력영상으로부터 미리 정확하게 추출되어 있다고 가정하기 때문이다. 일반적으로 목적이 되는 영역을 추출하기 위해 차영상이 많이 이용되고 있지만 차영상은 잡음과 구멍(hole)과 같은 오 추출된 영역이 발생하기 때문에 목적이 되는 영역을 3차원으로 복원을 할 때 심각한 오류를 초래할 수 있다. 전경물체(목적이 되는 영역)을 정확하게 추출하기 위해 최근 그래프 컷(graph cut)을 이용한 방법이 다양하게 시도되고 있다. 그래프 컷은 데이터 항(data term)과 스무드 항(smooth term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로 여러 공학적 문제에서 좋은 결과를 보이고 있지만, 에너지 함수의 데이터 항을 설정할 때 필요한 사전정보를 자동으로 얻기가 어렵다. 스테레오 비전의 깊이 정보가 최근 전경 물체 추출을 위한 사전정보로 많이 이용되고 있고 그들의 실험환경에서는 좋은 결과를 보이지만, 3차원 얼굴 복원에서 얼굴의 대부분이 동질의 영역을 가지고 있기 때문에 깊이 정보를 구하기 어려워 정확한 사전정보를 구하기가 어렵다. 본 논문에서는 3차원 얼굴 복원을 효과적으로 하기 위한 그래프 컷 기반의 전경 물체 추출 방법을 제안한다. 에너지 함수의 데이터 항을 설정하기 위해 전경 물체에 대한 사전정보를 추출해야 하며, 이를 위해 차영상을 이용하여 대략적인 전경 물체 추출하고, 사전정보에 대한 오류를 줄이기 위해 잡음과 그림자 영역을 제거한다. 잡음과 그림자 영역을 제거하면 구멍이 발생하거나 실루엣이 손상되는 문제가 발생한다. 손상된 정보는 근접한 픽셀이 유사하지 않을 때 낮은 비용을 할당하는 에너지 함수의 스무드(smooth) 항에 의해 에지 정보를 기반으로 채워진다. 결론적으로 제안된 방법은 스무드 항과 대략적으로 설정된 데이터 항으로 구성된 에너지 함수를 그래프 컷으로 전역적으로 최소화함으로써 더욱 정확하게 목적이 되는 영역을 추출할 수 있다.

  • PDF

Hair Classification and Region Segmentation by Location Distribution and Graph Cutting (위치 분포 및 그래프 절단에 의한 모발 분류와 영역 분할)

  • Kim, Yong-Gil;Moon, Kyung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.1-8
    • /
    • 2022
  • Recently, Google MedeiaPipe presents a novel approach for neural network-based hair segmentation from a single camera input specifically designed for real-time, mobile application. Though neural network related to hair segmentation is relatively small size, it produces a high-quality hair segmentation mask that is well suited for AR effects such as a realistic hair recoloring. However, it has undesirable segmentation effects according to hair styles or in case of containing noises and holes. In this study, the energy function of the test image is constructed according to the estimated prior distributions of hair location and hair color likelihood function. It is further optimized according to graph cuts algorithm and initial hair region is obtained. Finally, clustering algorithm and image post-processing techniques are applied to the initial hair region so that the final hair region can be segmented precisely. The proposed method is applied to MediaPipe hair segmentation pipeline.

Graph-based Motion Segmentation using Normalized Cuts (Normalized Cuts을 이용한 그래프 기반의 모션 분할)

  • Yun, Sung-Ju;Park, An-Jin;Jung, Kee-Chul
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.522-526
    • /
    • 2008
  • 모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 사용되며, 영화나 게임과 같은 콘텐츠에서 자주 활용되고 있다. 하지만 모션 캡쳐 장비가 고가이기 때문에 한번 입력받은 데이터를 모션별로 분할하고 상황에 맞게 재결합하여 사용할 필요가 있으며, 입력 데이터를 모션별로 분할하는 것은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 데이터를 자동으로 분할하기 위한 연구들이 다양하게 시도되고 있다. 기존의 연구들은 크게 전역적 특성에 대한 고려없이 이웃하는 프레임만을 고려하는 온라인 방식과 데이터를 전역적으로 고려하나 이웃하는 프레임 사이의 관계를 고려하지 않는 오프라인 방식으로 나누어진다. 본 논문에서는 온라인과 오프라인 방식을 병합한 그래프 기반의 모션 분할 방법을 제안한다. 분할을 위해 먼저 모션데이터를 기반으로 그래프를 생성하며, 그래프는 이웃하는 각 프레임사이의 유사도뿐만 아니라 시간축을 기반으로 일정시간내의 프레임들의 유사도를 모두 고려하였다. 이렇게 생성된 그래프를 분할하기 위해 분할된 모션내의 유사도 합을 최소화하고 각 모션간의 유사도는 최대화할 수 있는 normalized cuts을 이용하였다. 실험에서 제안된 방법은 기존의 오프라인 방식 중 하나인 GMM과 온라인 방식 중 하나인 국부최소값 분할 방법보다 좋은 결과를 보였으며, 이는 각 프레임 사이의 유사도뿐만 아니라 일정시간내의 유사도를 전역적으로 고려하기 때문이다.

  • PDF

Video Stitching Algorithm Using Improved Graphcut Algorithm (개선된 그래프 컷 알고리즘을 이용한 비디오 정합 알고리즘)

  • Yoon, Yeo Kyung;Rhee, Kwang Jin;Lee, Hoon Min;Lee, Yun Gu
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.06a
    • /
    • pp.112-115
    • /
    • 2018
  • 본 논문에서는 공간적 일관성과 시간적 일관성을 모두 고려하는 그래프 컷(graph cuts, GC) 알고리즘을 적용한 새로운 비디오 정합(video stitching) 방법을 제안한다. 먼저 입력 비디오로부터 취득한 전체 프레임에 대해서 정렬(frame alignment) 작업이 완료된 후, 프레임 합성(frame composition)을 위한 정합선 찾기(seam finding) 과정을 진행한다. 정합선을 찾는 과정에서 개선된 그래프 컷 알고리즘을 이용해 정렬된 프레임들을 자연스럽게 합성할 수 있는 최적의 정합선을 찾는다. 우선, 첫번째 입력 프레임에서 찾은 최적 정합선을 참조 정합선으로 설정한다. 그 다음, 연속된 프레임들의 정합선 찾기 과정을 수행할 때, 참조 정합선과의 거리 값을 가중치로 이용하는 새로운 비용 함수를 적용한다. 본 논문에서 제안하는 알고리즘으로 찾은 최적 정합선은 입력 프레임의 중첩 영역에 움직이는 물체가 존재할 때, 물체의 모양을 손상시키지 않으면서 동시에 연속된 프레임의 정합선을 유사한 형태로 유지시킨다. 결과적으로 공간적, 시간적 자연스러움이 보장되는 고품질의 비디오 정합 결과를 얻을 수 있다.

  • PDF

Fully automatic Segmentation of Knee Cartilage on 3D MR images based on Knowledge of Shape and Intensity per Patch (3차원 자기공명영상에서 패치 단위 형상 및 밝기 정보에 기반한 연골 자동 영역화 기법)

  • Park, Sang-Hyun;Lee, Soo-Chan;Shim, Hack-Joon;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.6
    • /
    • pp.75-81
    • /
    • 2010
  • The segmentation of cartilage is crucial for the diagnose and treatment of osteoarthritis (OA), and has mostly been done manually by an expert, requiring a considerable amount of time and effort due to the thin shape and vague boundaries of the cartilage in MR (magnetic resonance) images. In this paper, we propose a fully automatic method to segment cartilage in a knee joint on MR images. The proposed method is based on a small number of manually segmented images as the training set and comprised of an initial per patch segmentation process and a global refinement process on the cumulative per patch results. Each patch for per patch segmentation is positioned by classifying the bone-cartilage interface on the pre-segmented bone surface. Next, the shape and intensity priors are constructed for each patch based on information extracted from reference patches in the training set. The ratio of influence between the shape and intensity priors is adaptively determined per patch. Each patch is segmented by graph cuts, where energy is defined based on constructed priors. Finally, global refinement is conducted on the global cartilage using the results of per patch segmentation as the shape prior. Experimental evaluation shows that the proposed framework provide accurate and clinically useful segmentation results.

A depth-based Multi-view Super-Resolution Method Using Image Fusion and Blind Deblurring

  • Fan, Jun;Zeng, Xiangrong;Huangpeng, Qizi;Liu, Yan;Long, Xin;Feng, Jing;Zhou, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5129-5152
    • /
    • 2016
  • Multi-view super-resolution (MVSR) aims to estimate a high-resolution (HR) image from a set of low-resolution (LR) images that are captured from different viewpoints (typically by different cameras). MVSR is usually applied in camera array imaging. Given that MVSR is an ill-posed problem and is typically computationally costly, we super-resolve multi-view LR images of the original scene via image fusion (IF) and blind deblurring (BD). First, we reformulate the MVSR problem into two easier problems: an IF problem and a BD problem. We further solve the IF problem on the premise of calculating the depth map of the desired image ahead, and then solve the BD problem, in which the optimization problems with respect to the desired image and with respect to the unknown blur are efficiently addressed by the alternating direction method of multipliers (ADMM). Our approach bridges the gap between MVSR and BD, taking advantages of existing BD methods to address MVSR. Thus, this approach is appropriate for camera array imaging because the blur kernel is typically unknown in practice. Corresponding experimental results using real and synthetic images demonstrate the effectiveness of the proposed method.

Evaluation of the correlation between the muscle fat ratio of pork belly and pork shoulder butt using computed tomography scan

  • Sheena Kim;Jeongin Choi;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sumin Ryu;Yejin Choi;Sriniwas Pandey;Na Rae Lee;Juyoun Kang;Yujung Lee;Dongjun Kim;Kuk-Hwan Seol;Sun Moon Kang;In-Seon Bae;Soo-Hyun Cho;Hyo Jung Kwon;Samooel Jung;Youngwon Lee;Hyeun Bum Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.809-815
    • /
    • 2023
  • This study was conducted to find out the correlation between meat quality and muscle fat ratio in pork part meat (pork belly and shoulder butt) using CT (computed tomography) imaging technique. After 24 hours from slaughter, pork loin and belly were individually prepared from the left semiconductors of 26 pigs for CT measurement. The image obtained from CT scans was checked through the picture archiving and communications system (PACS). The volume of muscle and fat in the pork belly and shoulder butt of cross-sectional images taken by CT was estimated using Vitrea workstation version 7. This assemblage was further processed through Vitrea post-processing software to automatically calculate the volumes (Fig. 1). The volumes were measured in milliliters (mL). In addition to volume calculation, a three-dimensional reconstruction of the organ under consideration was generated. Pearson's correlation coefficient was analyzed to evaluate the relationship by region (pork belly, pork shoulder butt), and statistical processing was performed using GraphPad Prism 8. The muscle-fat ratios of pork belly taken by CT was 1 : 0.86, while that of pork shoulder butt was 1 : 0.37. As a result of CT analysis of the correlation coefficient between pork belly and shoulder butt compared to the muscle-fat ratio, the correlation coefficient was 0.5679 (R2 = 0.3295, p < 0.01). CT imaging provided very good estimates of muscle contents in cuts and in the whole carcass.

Assessing the relationship between muscle-to-fat ratio in pork belly and Boston butt using magnetic resonance imaging

  • Sheena Kim;Jeongin Choi;Eun Sol Kim;Gi Beom Keum;Hyunok Doo;Jinok Kwak;Sumin Ryu;Yejin Choi;Juyoun Kang;Haram Kim;Yeongjae Chae;Yujung Lee;Dongjun Kim;Kuk-Hwan Seol;Sun Moon Kang;Yunseok Kim;Pil Nam Seong;In-Seon Bae;Soohyun Cho;Hyo Jung Kwon;Samooel Jung;Youngwon Lee;Hyeun Bum Kim
    • Korean Journal of Agricultural Science
    • /
    • v.51 no.2
    • /
    • pp.187-192
    • /
    • 2024
  • This research aimed to investigate the relationship between meat quality and muscle-to-fat ratio in specific cuts of pork (pork belly and Boston butt) utilizing magnetic resonance imaging (MRI). Twenty-eight pigs were selected, and 24 hours post-slaughter, pork belly and Boston butt samples were individually extracted from the left half carcass for MRI assessment. The MRI scans were reviewed using the Picture Archiving and Communications System. Muscle and fat volumes in the pork belly and Boston butt from the cross-sectional images captured by MRI were estimated using Vitrea workstation version 7. Subsequently, these data were processed using Vitrea post-processing software to automatically determine the volumes, measured in milliliters (mL). Additionally, a three-dimensional reconstruction of the organ being studied was generated. The relationship between regions (pork belly and Boston butt) was assessed using Pearson's correlation coefficient, and statistical analysis was conducted using Graph Pad Prism 8. The muscle-to-fat ratio determined by MRI for pork belly was 1 : 0.64, whereas for Boston butt it was 1 : 0.35. Results of comparing the muscle-fat ratio, the correlation coefficient between pork belly and Boston butt was found to be 0.6127 (R2 = 0.3754, p < 0.001) based on MRI analysis. As a result of measuring the muscle-to-fat ratio using MRI as a non-destructive approach, there was a positive correlation between the muscle-to-fat ratios of pork belly and Boston butt.