• 제목/요약/키워드: graph cuts

검색결과 29건 처리시간 0.029초

Automated Segmentation of the Lateral Ventricle Based on Graph Cuts Algorithm and Morphological Operations

  • Park, Seongbeom;Yoon, Uicheul
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권2호
    • /
    • pp.82-88
    • /
    • 2017
  • Enlargement of the lateral ventricles have been identified as a surrogate marker of neurological disorders. Quantitative measure of the lateral ventricle from MRI would enable earlier and more accurate clinical diagnosis in monitoring disease progression. Even though it requires an automated or semi-automated segmentation method for objective quantification, it is difficult to define lateral ventricles due to insufficient contrast and brightness of structural imaging. In this study, we proposed a fully automated lateral ventricle segmentation method based on a graph cuts algorithm combined with atlas-based segmentation and connected component labeling. Initially, initial seeds for graph cuts were defined by atlas-based segmentation (ATS). They were adjusted by partial volume images in order to provide accurate a priori information on graph cuts. A graph cuts algorithm is to finds a global minimum of energy with minimum cut/maximum flow algorithm function on graph. In addition, connected component labeling used to remove false ventricle regions. The proposed method was validated with the well-known tools using the dice similarity index, recall and precision values. The proposed method was significantly higher dice similarity index ($0.860{\pm}0.036$, p < 0.001) and recall ($0.833{\pm}0.037$, p < 0.001) compared with other tools. Therefore, the proposed method yielded a robust and reliable segmentation result.

Mean Shift 분석을 이용한 그래프 컷 기반의 자동 칼라 영상 분할 (Graph Cut-based Automatic Color Image Segmentation using Mean Shift Analysis)

  • 박안진;김정환;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제36권11호
    • /
    • pp.936-946
    • /
    • 2009
  • 그래프 컷(graph cuts) 방법은 주어진 사전정보와 각 픽셀간의 유사도를 나타내는 데이터 항(data term)과 이웃하는 픽셀간의 유사도를 나타내는 스무드 항(smoothness term)으로 구성된 에너지 함수를 전역적으로 최소화하는 방법으로, 최근 영상 분할에 많이 이용되고 있다. 기존 그래프 컷 기반의 영상 분할 방법에서 데이터 항을 설정하기 위해 GMM(Gaussian mixture model)을 주로 이용하였으며, 평균과 공분산을 각 클래스를 위한 사전정보로 이용하였다. 이 때문에 클래스의 모양이 초구(hyper-sphere) 또는 초타원(hyper-ellipsoid)일 때만 좋은 성능을 보이는 단점이 있다. 다양한 클래스의 모양에서 좋은 성능을 보이기 위해, 본 논문에서는 mean shift 분석 방법을 이용한 그래프 컷 기반의 자동 영상분할 방법을 제안한다. 데이터 항을 설정하기 위해 $L^*u^*{\upsilon}^*$ 색상공간에서 임의로 선택된 초기 mean으로부터 밀도가 높은 지역인 모드(mode)로 이동하는 mean의 집합들을 사전정보로 이용한다. Mean shift 분석 방법은 군집화에서 좋은 성능을 보이지만, 오랜 수행시간이 소요되는 단점이 있다. 이를 해결하기 위해 특징공간을 3차원 격자로 변형하였으며, mean의 이동은 격자에서 모든 픽셀이 아닌 3차원 윈도우내의 1차원 모멘트(moment)를 이용한다. 실험에서 GMM을 이용한 그래프 컷 기반의 영상분할 방법과 최근 많이 이용되고 있는 mean shift와 normalized cut기반의 영상분할 방법을 제안된 방법과 비교하였으며, Berkeley dataset을 기반으로 앞의 세 가지 방법보다 좋은 성능을 보였다.

무릎 자기공명영상에서 지역적 확률 아틀라스 정렬 및 반복적 그래프 컷을 이용한 전방십자인대 분할 (Anterior Cruciate Ligament Segmentation in Knee MRI with Locally-aligned Probabilistic Atlas and Iterative Graph Cuts)

  • 이한상;홍헬렌
    • 정보과학회 논문지
    • /
    • 제42권10호
    • /
    • pp.1222-1230
    • /
    • 2015
  • 무릎 자기공명영상에서 전방십자인대의 분할은 밝기값의 불균일성 및 주변 조직들과의 유사 밝기값 특성으로 인해 기존 분할기법의 적용에 한계가 있다. 본 논문에서는 지역적 정렬을 통한 확률아틀라스 생성 및 반복적 그래프 컷을 통한 다중아틀라스 기반 전방십자인대 분할기법을 제안한다. 첫째, 전역 및 지역적 다중아틀라스 강체정합을 통해 전방십자인대의 확률아틀라스를 생성한다. 둘째, 생성된 확률아틀라스를 이용하여 최대사후추정 및 그래프 컷을 통하여 전방십자인대 초기 분할을 수행한다. 셋째, 마스크 기반 강체정합을 통한 형상정보 개선 및 반복적 그래프 컷을 통해 전방십자인대 분할 개선을 수행한다. 제안방법의 성능평가를 위하여 육안평가 및 정확성평가를 수행하였으며, 평가 결과 제안방법의 Dice 유사도는 75.0%, 평균표면거리는 1.7화소, 제곱근표면거리는 2.7화소로서 기존 그래프 컷 방법에 비하여 전방 십자인대의 분할정확도가 각각 12.8%, 22.7%, 및 22.9% 향상된 것으로 나타났다.

복부 컴퓨터 단층촬영영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할 (Automatic Segmentation of Renal Parenchyma using Graph-cuts with Shape Constraint based on Multi-probabilistic Atlas in Abdominal CT Images)

  • 이재선;홍헬렌;나군호
    • 한국컴퓨터그래픽스학회논문지
    • /
    • 제22권4호
    • /
    • pp.11-19
    • /
    • 2016
  • 본 논문에서는 복부 CT 영상에서 다중 확률 아틀라스 기반 형상제한 그래프-컷을 사용한 신실질 자동 분할 방법을 제안한다. 제안 방법은 다음의 세 단계로 구성된다. 첫째, 신실질의 다양한 형상정보를 이용하기 위해 피질기반 유사정합을 통한 다중 확률 아틀라스를 생성한다. 둘째, 최대사후확률 추정을 통해 그래프-컷의 초기 씨앗을 추출하고, 형상제한 그래프-컷을 통해 신실질을 분할한다. 셋째, 확률 아틀라스의 정합 오차를 줄이고 분할 정확도를 높이기 위해, 정합 및 분할을 반복적으로 수행한다. 제안방법의 성능을 평가하기 위해 정성적 평가 및 정량적 평가를 수행하였다. 실험결과 제안방법이 신실질과 유사한 밝기값을 갖는 주변 영역으로의 누출을 방지하여 개선된 분할 정확도를 보여준다.

그래프 컷을 이용한 학습된 자기 조직화 맵의 자동 군집화 (Automatic Clustering on Trained Self-organizing Feature Maps via Graph Cuts)

  • 박안진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권9호
    • /
    • pp.572-587
    • /
    • 2008
  • SOFM(Self-organizing Feature Map)은 고차원의 데이타를 군집화(clustering)하거나 시각화(visualization)하기 위해 많이 사용되고 있는 비교사 학습 신경망(unsupervised neural network)의 한 종류이며, 컴퓨터비전이나 패턴인식 분야에서 다양하게 활용되고 있다. 최근 SOFM이 실제 응용분야에 다양하게 활용되고 좋은 결과를 보이고 있지만, 학습된 SOFM의 뉴론(neuron)을 다시 군집화해야 하는 후처리가 필요하며, 대부분의 경우 수동으로 이루어지고 있다. 후처리를 자동으로 하기 위해 k-means와 같은 기존의 군집화 알고리즘을 많이 이용하지만, 이 방법은 특히 다양한 모양의 클래스를 가진 고차원의 데이타에서 만족스럽지 못한 결과를 보인다. 다양한 모양의 클래스에서 좋은 성능을 보이기 위해, 본 논문에서는 그래프 컷(graph cut)을 이용하여 학습된 SOFM을 자동으로 군집화하는 방법을 제안한다. 그래프 컷을 이용할 때 터미널(terminal)이라는 두 개의 추가적인 정점(vertex)이 필요하며, 터미널과 각 정점 사이의 가중치는 대부분 사용자에 의해 입력받은 사전정보를 기반으로 설정된다. 제안된 방법은 SOFM의 거리 매트릭스(distance matrix)를 기반으로 한 모드 탐색(mode-seeking)과 모드의 군집화를 통하여 자동으로 사전정보를 설정하며, 학습된 SOFM의 군집화를 자동으로 수행한다. 실험에서 효율성을 검증하기 위해 제안된 방법을 텍스처 분할(texture segmentation)에 적용하였다. 실험 결과에서 제안된 방법은 기존의 군집화 알고리즘을 이용한 방법보다 높은 정확도를 보였으며, 이는 그래프기반의 군집화를 통해 다양한 모양의 클러스터를 처리할 수 있기 때문이다.

디노이징 오토인코더와 그래프 컷을 이용한 딥러닝 기반 바이오-셀 영상 분할 (Bio-Cell Image Segmentation based on Deep Learning using Denoising Autoencoder and Graph Cuts)

  • 임선자;칼렙부누누;권오흠;이석환;권기룡
    • 한국멀티미디어학회논문지
    • /
    • 제24권10호
    • /
    • pp.1326-1335
    • /
    • 2021
  • As part of the cell division method, we proposed a method for segmenting images generated by topography microscopes through deep learning-based feature generation and graph segmentation. Hybrid vector shapes preserve the overall shape and boundary information of cells, so most cell shapes can be captured without any post-processing burden. NIH-3T3 and Hela-S3 cells have satisfactory results in cell description preservation. Compared to other deep learning methods, the proposed cell image segmentation method does not require postprocessing. It is also effective in preserving the overall morphology of cells and has shown better results in terms of cell boundary preservation.

CHROMATIC NUMBER OF BIPOLAR FUZZY GRAPHS

  • TAHMASBPOUR, A.;BORZOOEI, R.A.
    • Journal of applied mathematics & informatics
    • /
    • 제34권1_2호
    • /
    • pp.49-60
    • /
    • 2016
  • In this paper, two different approaches to chromatic number of a bipolar fuzzy graph are introduced. The first approach is based on the α-cuts of a bipolar fuzzy graph and the second approach is based on the definition of Eslahchi and Onagh for chromatic number of a fuzzy graph. Finally, the bipolar fuzzy vertex chromatic number and the edge chromatic number of a complete bipolar fuzzy graph, characterized.

Normalized Cuts을 이용한 그래프 기반의 하이레벨 모션 분할 (Graph-based High-level Motion Segmentation using Normalized Cuts)

  • 윤성주;박안진;정기철
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권11호
    • /
    • pp.671-680
    • /
    • 2008
  • 모션 캡쳐 장비는 사람의 자연스러운 행동이나 동작 정보를 정밀하게 얻기 위해 널리 이용되며, 영화나 게임과 같은 콘텐츠 제작 시에 자주 활용된다. 하지만 모션 캡쳐 장비가 고가이고 이용하기 불편하기 때문에 대부분의 경우 한번 입력받은 데이타를 모션별로 분할하고 상황에 맞게 재결합하여 이용하며, 입력 데이타를 모션별로 분할하는 작업은 대부분 수동으로 이루어진다. 이 때문에 캡쳐된 모션 데이타를 자동으로 분할하기 위한 연구들이 최근 다양하게 시도되고 있다. 기존의 연구들은 크게 각 프레임의 전역적 특징을 고려하는 오프라인 방법과 이웃하는 프레임 사이의 유사도를 고려하는 온라인 방법으로 나누어진다. 본 논문에서는 온라인과 오프라인 방법을 통합한 그래프 기반의 하이레벨 모션 분할 방법을 제안한다. 하이레벨 모션은 모션 내에서 반복되는 프레임을 포함하는 특징을 가지고 있다. 우리는 이 특징을 기반으로 이웃하는 프레임뿐만 아니라 일정시간내의 모든 프레임 사이의 유사도를 고려하는 그래프를 생성하며, 그래프의 정점(vertex)에는 프레임 정보를 간선(edge)의 가중치는 두 프레임 사이의 유사도를 반영한다. 그래프를 분할하기 위해 분할된 간선의 가중치를 전역적으로 최소화할 수 있는 normalized cuts을 이용하며, 분할된 정점의 집합은 하이레벨 모션을 의미한다. 결과적으로 제안된 방법은 이웃하는 프레임뿐만 아니라 일정시간내의 모든 프레임 사이의 유사도를 반영하는 그래프를 전역적으로 최소화함으로써 온라인과 오프라인 방법을 동시에 고려할 수 있으며, 실험에서 제안된 방법은 기존의 오프라인 방법 중 하나인 GMM과 온라인 방법 중 하나인 PEA를 이용한 방법보다 좋은 결과를 보였다

슈퍼픽셀 기반의 그래프 컷을 이용한 객체 추적 (Visual Object Tracking Using Superpixel-Based Graph Cuts)

  • 이대연;김창수
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2013년도 하계학술대회
    • /
    • pp.64-65
    • /
    • 2013
  • 본 논문에서는 슈퍼픽셀(superpixel) 단위의 그래프 컷 알고리즘을 적용하여 객체 추적의 정확도를 향상시키기 위한 방법을 제안한다. 먼저 영상 분할 기법을 사용하여 입력 영상을 슈퍼픽셀로 분할하고 각 슈퍼픽셀에서 색상 히스토그램을 이용한 특성 벡터를 생성한다. 그리고 특성 벡터에 지지벡터기계(support vector machines)를 사용하여 각 슈퍼픽셀의 객체 확률 값을 추정한다. 객체 확률 값을 데이터 항(data term)으로, 이웃한 슈퍼픽셀 간의 특성 벡터 차 값을 스무드 항(smooth term)으로 하여, 그래프 컷(graph cuts) 알고리즘으로 슈퍼픽셀들을 객체와 배경으로 분류하고 객체 슈퍼픽셀을 최대한으로 포함하는 객체 윈도우를 찾는다. 실험 결과는 제안하는 기법이 기존 기법들보다 객체 추적 성능이 우수함을 보여준다.

  • PDF

그래프 컷 커널을 이용한 스테레오 대응 (Stereo Correspondence Using Graphs Cuts Kernel)

  • 이용환;김영섭
    • 반도체디스플레이기술학회지
    • /
    • 제16권2호
    • /
    • pp.70-74
    • /
    • 2017
  • Given two stereo images of a scene, it is possible to recover a 3D understanding of the scene. This is the primary way that the human visual system estimates depth. This process is useful in applications like robotics, where depth sensors may be expensive but a pair of cameras is relatively cheap. In this work, we combined our interests to implement a graph cut algorithm for stereo correspondence, and performed evaluation against a baseline algorithm using normalized cross correlation across a variety of metrics. Experimental trials revealed that the proposed descriptor exhibited a significant improvement, compared to the other existing methods.

  • PDF