• Title/Summary/Keyword: granule cells

Search Result 189, Processing Time 0.039 seconds

The Role of Stress Granules in the Neuronal Differentiation of Stem Cells

  • Jeong, Sin-Gu;Ohn, Takbum;Jang, Chul Ho;Vijayakumar, Karthikeyan;Cho, Gwang-Won
    • Molecules and Cells
    • /
    • v.43 no.10
    • /
    • pp.848-855
    • /
    • 2020
  • Cells assemble stress granules (SGs) to protect their RNAs from exposure to harmful chemical reactions induced by environmental stress. These SGs release RNAs, which resume translation once the stress is relieved. During stem cell differentiation, gene expression is altered to allow cells to adopt various functional and morphological features necessary to differentiate. This process induces stress within a cell, and cells that cannot overcome this stress die. Here, we investigated the role of SGs in the progression of stem cell differentiation. SGs aggregated during the neuronal differentiation of human bone marrow-mesenchymal stem cells, and not in cell lines that could not undergo differentiation. SGs were observed between one and three hours post-induction; RNA translation was restrained at the same time. Immediately after disassembly of SGs, the expression of the neuronal marker neurofilament-M (NF-M) gradually increased. Assembled SGs that persisted in cells were exposed to salubrinal, which inhibited the dephosphorylation of eukaryotic translation initiation factor 2 subunit 1 (eIF2α), and in eIF2α/S51D mutant cells. When eIF2α/S51A mutant cells differentiated, SGs were not assembled. In all experiments, the disruption of SGs was accompanied by delayed NF-M expression and the number of neuronally differentiated cells was decreased. Decreased differentiation was accompanied by decreased cell viability, indicating the necessity of SGs for preventing cell death during neuronal differentiation. Collectively, these results demonstrate the essential role of SGs during the neuronal differentiation of stem cells.

Structure of Oocyte Surface in Two Korean Minnow Species, Rhynchocypris kumgangensis and R. oxycephalus (Pisces: Cyprinidae) (금강모치와 버들치 난모세포의 표피 구조)

  • Gwak, Jin-Young;Park, Jong-Young
    • Korean Journal of Ichthyology
    • /
    • v.19 no.1
    • /
    • pp.16-23
    • /
    • 2007
  • Oocyte surface in two Korean minnows, Rhynchocypris oxycephalus and R. kumgangensis was examined by light and electron microscope. In two species, the development of the oocyte was similar, but the follicular layer surrounding full-grown oocyte showed an evident difference. In R. oxycephalus, the follicular layer at the yolk vesicle stage became bilaminar with the retention of its outer squamous cell layer and the acquisition of an inner cuboidal or round cell layer just over the zona radiata. As the oocyte grows, the cuboidal cells of the inner follicular layer began to be replaced by columnar cells. At the yolk granule stage, the columnar cells secreted mucin to their cytoplasm (adhesive materials) and then surround the entire oocyte, as bundles of fence-shaped structures. Whereas, although the follicular layer of R. kumgangensis had an outer squamous layer and an inner cuboidal or round cell layer at the yolk vesicles as in R. oxycephalus, no inner cells were more changed with the retention of its cuboidal or round cells. Finally, in R. kumgangensis, the adhesive materials did not occur. In Korean two minnows, the structural difference in the oocyte surface seems to be related to their habitats and spawning characteristics as well as taxonomic characters.

Ultrastructures of the Cutaneous Chromatophores and Pigment Granule Formation in the Goldfish, Carassius auratus L. I. Xanthophore (금붕어(Carassius auratus L.) 피부(皮膚) 색소세포(色素細胞)의 미세구조(微細構造) 및 色素顆粒(색소과립) 형성(形成)에 관한 연구(硏究) I. 황색소세포(黃色素細胞)(xanthophore))

  • Moon, Myung-Jin;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.16 no.2
    • /
    • pp.35-48
    • /
    • 1986
  • Ultrastructures of the cutaneous xanthophores and formation of pigment granules in the goldfish, Carassius auratus L., are studied with electron microscope. The cutaneous xanthophores are observed only in dermis and pigment granules of these pigment cells are pterinosomes and carotenoid vesicles. By the differentiated level, pterinosomes are subdivided into 3 types; while type I pterinosomes have clear limiting membranes and contain some amorphous fine fibrous structures, type II pterinosomes have thick and densely aggregated fibrous materials. Type III pterinosomes have concentric lamellar structures in the granules. Pigment granules of the xanthophores are originated from the Golgi complexes and pinocytotic vesicles of plasma membrane as well as rER-rich cells among the chromatophores are presumed to be associated with the accumulation of pigment materials.

  • PDF

Electron Microscopic Studies on the Rat Mast Cells Induced by Morphine Hydrochloride (Morphine Hydrochloride로 인한 흰쥐 장간막 비만세포의 형태학적 변화에 대한 전자현미경적 연구)

  • Kang, Ho-Suck;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 1973
  • The effects of morphine HCl on the mesenteric mast cells were studied the electron microscopy. The results of the observations are as follows: 1. In the experimental group for intravenous injection of morphine HCl 12 mg/kg, the granules appeared cluster, granular lysis and an electron transparent appearance. Frequently, some granules appeared in the extracellular space. 2. In the experimental group for intravenous injection of morphine HCl 24 mg / kg, it was observed. that the formation of a clear halo or a space around each granule. Many altered granules showing a reticular texture (type 2) are observed in the cytoplasm. 3. From the results mentioned above, it is suggested that rat mesenteric mast cell' granules were affected by morphine HCl.

  • PDF

Mediation of $N-methyl-_D-aspartate$ on Neuropeptide Y Expression Induced by Morphine in Mouse Cerebellum

  • Kwon, Gee-Youn;Kim, Soo-Kyung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.6
    • /
    • pp.479-485
    • /
    • 2001
  • The existence of opioid receptors in mammalian cerebellum except human, has not been clearly understood. In the present study, we found that NPY was inducible by morphine in the mouse cerebellar granular and Purkinje cell layers. We performed in situ RT-PCR and immunohistochemistry to characterize the NPY expression. The increase of NPY gene expression by morphine (30 mg/kg, i.p.) was inhibited by pretreatment with not only naloxone (100 mg/kg, i.p.) but also a noncompetitive NMDA antagonist, MK-801 (0.3 mg/kg, i.p.). The competitive NMDA antagonist, AP-5 (0.9 mg/kg, i.p.) slightly attenuated the increased NPY expression by morphine. Also, the finding similar to morphine was shown by NMDA (70 mg/kg, i.p.) treatment. Our results indicate that NPY was inducible by morphine and this might reflect activation of NMDA receptors in granule cells that relay mossy fiber inputs to Purkinje cells via parallel fibers.

  • PDF

Ultrastructure of Fresh Root Turned into Inside White of Red Ginseng (홍삼 내백부의 수삼 미세구조)

  • Cho, Byung-Goo;Park, Hoon;Lee, Jun-Seong
    • Journal of Ginseng Research
    • /
    • v.18 no.3
    • /
    • pp.187-190
    • /
    • 1994
  • The pith and xylem parts of fresh root that turned into inside-white during processing for red ginseng was investigated under scanning electron microscope in comparison with the sa31e position of fresh root processed into normal reddening. In the inside-white part starch storage cells remain mostly in vacancy or with small number of starch granules and with large hollow by missing cell membranes between cells. Many starch seed granules appeared on the surface of storage cell wall in the inside-white part. Fresh root sample showed better picture than dried powder.

  • PDF

Oxidative stress causes Alu RNA accumulation via PIWIL4 sequestration into stress granules

  • Hwang, Yeo Eun;Baek, Yu Mi;Baek, Ahruem;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.52 no.3
    • /
    • pp.196-201
    • /
    • 2019
  • The Alu element, the most abundant transposable element, is transcribed to Alu RNA. We hypothesized that the PIWI protein regulates the expression of Alu RNA in retinal pigment epithelial (RPE) cells, where accumulated Alu RNA leads to macular degeneration. Alu transcription was induced in RPE cells treated with $H_2O_2$. At an early stage of oxidative stress, PIWIL4 was translocated into the nucleus; however, subsequently it was sequestered into cytoplasmic stress granules, resulting in the accumulation of Alu RNA. An elevated amount of Alu RNA was positively correlated with the disruption of the epithelial features of RPE via induction of mesenchymal transition. Therefore, we suggest that oxidative stress causes Alu RNA accumulation via PIWIL4 sequestration into the cytoplasmic stress granules.

Protective Effects of Ginsenosides on Cyanide-induced Neurotoxicity in Cultured Rat Cerebellar Granule Cells

  • Seong, yeon-Hee;Koh, Sang-Bum;Jo, Soon-Ok
    • Journal of Ginseng Research
    • /
    • v.24 no.4
    • /
    • pp.196-201
    • /
    • 2000
  • Effects of ginsenosides on NaCN-induced neuronal cell death were studied in cultured rat cerebellar granule cells. NaCN produced a concentration-dependent (1-10 mM) reduction of cell viability (measured by frypan blue exclusion test), that was blocked by N-methyl-D-aspartate receptor antagonist (MK-801) and L-type Ca$\^$2+/ channel blocker (verapamil). Pretreatment with ginsenosides (Rb$_1$, Rc, Re, Rf and Rg$_1$) significantly decreased the neuronal cell death in a concentration range of 0.5∼5$\mu\textrm{g}$/ml. Ginsenosides Rb$_1$ and Rc (5 $\mu\textrm{g}$/ml) inhibited glutamate release into medium induced by NaCN (5 mM). NaCN (1 mM)-induced increase of [Ca$\^$2+/], was significantly inhibited by the pretreatment of Rb$_1$ and Rc (5 $\mu\textrm{g}$/ml). Other ginsenosides caused relatively little inhibition on the elevation of glutamate release and of (Ca$\^$2+/). These results suggest that the NaCN-induced neurotoxicity was related to a series of cell responses consisting of glutamate release and [Ca$\^$2+/]i elevation via glutamate (NMDA and kainate) receptors and resultant cell death, and that ginsenosides, especially Rb$_1$ and Rc, prevented the neuronal cell death by the blockade of the NaCN-induced Ca$\^$2+/influx.

  • PDF

Effects of PCB Congeners in Rodent Neuronal Cells in Culture : Effects of Chitosan (PCB 이성질체가 설치류 신경세포에 미치는 영향: 키토산의 효과)

  • Kim, Sun-Young;Lee, Hyun-Gyo
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.3
    • /
    • pp.279-285
    • /
    • 2007
  • The present study attempted to analyze the mechanism of PCB-induced neurotoxicity with respect to the PKC signaling. Since the developing neuron is particularly sensitive to PCB-induced neurotoxicity, we isolated cerebellar granule cells derived from 7-day old SD rats and grew cells in culture for additional 7 days to mimic PND-14 conditions. Only non-coplanar PCBs at a high dose showed a significant increase of total PKC activity at $[^3H]PDBu$ binding assay, indicating that non-coplanar PCBs are more neuroactive than coplanar PCBs in neuronal cells. PKC isoforms were immunoblotted with respective monoclonal antibodies. PKC-alpha and-epsilon were activated with non-coplanar PCB exposure. The result suggests that coplanar PCBs have a PKC pathway different from non-coplanar PCBs. Activation of PKC with exposure was dampened with treatment of high molecular weight of chitosan. Chilean (M.W. > 1,000 kDa) inhibited the total activity of PKC induced by the non-coplanar PCBs. Translocation of PKC isoforms was also inhibited by the high molecular weight of chitosan. The study demonstrated that non-coplanar PCBs are more potent neurotoxic congeners than coplanar PCBs and the alteration of PKC activities by PCB exposure can be blocked with the treatment of chitosan. The results suggest a potential use of chitosan as a means of nutritional intervention to prevent the harmful effects of pollutant-derived diseases.

The Fine Structure of Human Fetal Nail Matrix (한국인 태아 조기질의 미세구조에 관한 연구)

  • Sohn, Hyung-Sun;Choi, Jae-Kwon;Chung, Yun-Young;Bae, Choon-Sang
    • Applied Microscopy
    • /
    • v.26 no.1
    • /
    • pp.79-93
    • /
    • 1996
  • The differentiation of nail matrix and fine structure of matrix cells were studied with light and electron microscope using specimens from nails of thumb finger in Korean fetuses 14 to 24 weeks old. Fetal nail matrix consisted of two horizontal layers, thicker ventral and thinner dorsal matrices, originating from invagination of epidermis in proximal nail field. Matrix being generally thicker in its distal region than the apex became gradually thickened with increase of the fetal age. Each matrix consisted of single layer of basal cells and multiple layers of squamous cells which are arranged close to and parallel to the central axis of the nail mairix. The process of keratinization of fetal nail matrix was noted to be occured concurrently in the ventral and dorsal matrices along the central axis of matrix toward distal and dorsal direction. Squamous cells became matured with accumulation of tonofilaments, increase of keratohyalin granules, discharge of membrane coating granules, and narrowing of intercellular spaces, thickening of plasma membrane and finally being transformed into horny cells of nail plate. Horny cells of nail plate filled with fibrous elements in the electron dense amorphous substance. These findings of keratinization process of fetal nail matrix appeared to be similar to those of keratinization in epidermis and inner root sheath of the hair. In the nail matrix, however, corresponding region to the keratogenous zone of growing hair follicle was not observed. Vacuolated squamous cells of nail matrix seen on light microscopy was considered to be artefactual product, but squamous cells with condensed small nuclei rarely found adjacent nail plate was considered to be one of the squamous cells with unknown function. Proximal end of nail plate was observed on dorsal surface of nail field distal to the proximal nail fold at 14 and 16 weeks old human embryos. Proximal prolongation of the proximal end of nail plate was occured with advancing fetal age and afterward 21 weeks nail plate invaded into nail matrix. Melanin granule containing cells and Merkel cells were present only on the basal layer of dorsal nail matirx.

  • PDF